Learning Fair Classifiers in Online Stochastic Settings

Yi Sun¹ Ivan Ramirez¹ Alfredo Cuesta-Infante² Kalyan Veeramachaneni¹ ¹Massachusetts Institute of Technology ²Universidad Rey Juan Carlos

Introduction and Motivation

What makes policy-driven machine learning different?

- \blacktriangleright Data might not be available upfront \longrightarrow Online Algorithm
- \blacktriangleright Human decision makers in the loop \longrightarrow Meta Algorithm
- ► Fair and Accurate

Online Binary Classification With Fairness

Optimal Balance Between Regret and Fairness

At each round, we solve the following optimization problem to minimize the fairness and regret upper bound:

$$\mathbf{q}^* = \arg\min_{\mathbf{q}} ||\lambda(\mathbf{A}\mathbf{q} - \mathbf{b})||^2 \tag{3}$$

where λ is a vector of balancing the importance of equalized FPR, equalized FNR and regret that can be provided on a case-by-case basis based on different potential applications.

Given: A set of experts $f \in \mathcal{F}$, where $f : (\mathcal{X}, \mathcal{Z}) \longrightarrow \{0, 1\}$ At each round:

- An individual arrives with sensitive attributes z, and non-sensitive attributes x
- Sample an expert and use it's prediction
- Observe true label and update weights on experts **Goal**:
- 1. Regret

$$\sum_{t=1}^T \ell(f^t(x^t,z^t),y^t) - \inf_{f\in\mathcal{F}}\sum_{t=1}^T \ell(f(x^t,z^t),y^t)$$

2. Equalized Odds [2]

$$|\mathbb{E}[\hat{Y}=1|Y=1,Z=A]-\mathbb{E}[\hat{Y}=1|Y=1,Z=B]|\leq\epsilon$$

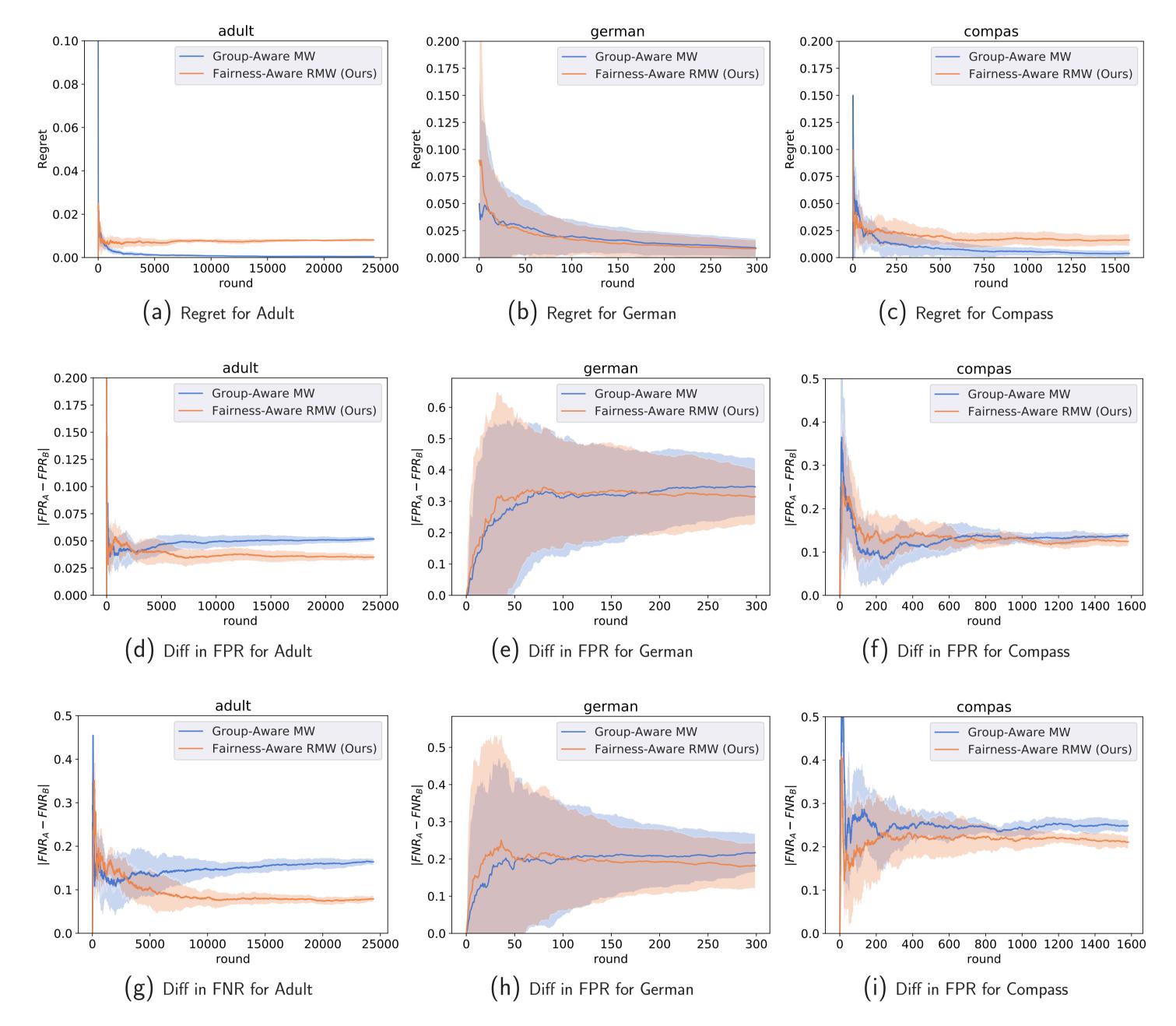
Methodology

Key Ideas

- Running separate instances of Multiplicative Weights algorithm for each group and label combination
- Randomize between instances help with fairness
- Obtain optimal selection probability between instances by optimizing regret and fairness bound

Experiments

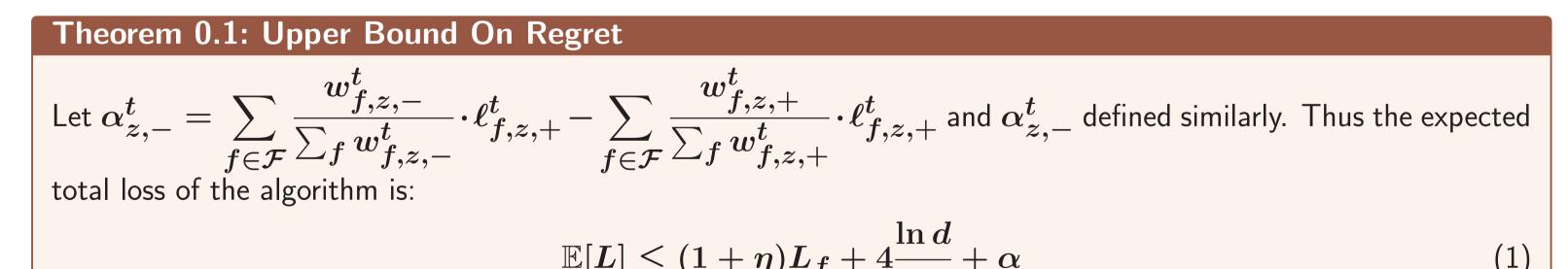
The set of classifiers \mathcal{F} in our hypothesis sets are as follows: Logistic Regression (LR), Linear SVM (L SVM), RBF SVM, Decision Tree (DT), Multi-Layer Perceptron (MLP). We pre-trained each classifier for each trial by splitting the data set, with 70% for training and 30% for testing. During the simulations, the examples in the testing set arrived one by one. We compare with [1], which achieves equalized error rates by running seperate instance of MW algorithm for each sensitive group.



Algorithm

Initialize $w_{f,z,k}^1 = 1 \quad \forall f, z, k$, and $q_{z,k}^1 = \frac{1}{2} \quad \forall z, k$ for $t \leftarrow 1, ..., T$ do Each classifier obtains \hat{y}_{f}^{t} Obtain the optimal q^* $\begin{array}{c|c} \frac{w_{f,z^{t},+}}{\sum\limits_{f\in\mathcal{F}} w_{f,z^{t},+}^{t}} & \text{with probability } q_{z^{t},+}^{*} \\ \frac{w_{f,z^{t},-}^{t}}{\sum\limits_{f\in\mathcal{F}} w_{f,z^{t},-}^{t}} & \text{with probability } q_{z^{t},-}^{*} \end{array}$ $\pi^t(f|z^t) = \left\{ \right.$ Select classifier f according to probability π^t and update the regret Obtain loss $\ell_f^t = \ell(\hat{y}_f^t, y^t)$ for each classifier fUpdate weights $w_{f,z,k}^{t+1} = w_{f,z,k}^t (1-\eta)^{\ell_f^t 1\{z^t=z\} 1\{y^t=k\}} \quad \forall f, z, k$ end **Algorithm 1:** Fairness-Aware MW algorithm

Figure 1: Fairness-aware RMW algorithm



Conclusion

- Improvement in fairness both in terms of equalized FPR and FNR, along with a small increase in regret
- Randomization help overcome biases of experts

References

[1] A. Blum, S. Gunasekar, T. Lykouris, and N. Srebro.

where
$$lpha=\sum_{z\in\{A,B\},y\in\{+,-\}}q_{z,y}\sum_tlpha_{z,y}^t$$

Theorem 0.2: Fairness Bound

In the stochastic setting, there exists $q_{A,-}$ and $q_{B,-}$ such that the absolute difference in FPR can be bounded as:

 $\mathbb{E}_{x,y,z}\left[\frac{\mathbb{E}[L_{A,-}]}{C_{A,-}} - \frac{\mathbb{E}[L_{B,-}]}{C_{B,-}}\right] \le (1+\eta - \gamma(\eta)) \mathbb{E}_{x,y,z}\left[\frac{L_{f^*(B,-),B,-}}{C_{B,-}}\right] + \epsilon(1+\eta) + \left(\frac{q_{A,-} \cdot \sum_t \alpha_{A,-}^t}{p \cdot (1-\mu_{A,+}) \cdot T} - \frac{q_{B,-} \cdot \sum_t \alpha_{B,-}^t}{(1-p) \cdot (1-\mu_{B,+}) \cdot T}\right) (2)$

On preserving non-discrimination when combining expert advice. In NeurIPS, 2018.

[2] P. E. S. N. e. a. Hardt, Moritz. Equality of opportunity in supervised learning. In In Advances in Neural Information Processing Systems, pp. 3315–3323, 2016.