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Introduction and Motivation

What makes policy-driven machine learning different?
» Data might not be available upfront —— Online Algorithm
Human decision makers in the loop — Meta Algorithm

\ 4

» Fair and Accurate

Online Binary Classification With Fairness

Given: A set of experts f € F, where f: (X,Z2) — {0,1}

At each round:
» An individual arrives with sensitive attributes z, and non-sensitive attributes x
» Sample an expert and use it's prediction
» Observe true label and update weights on experts

Goal:
1. Regret
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Methodology

Key ldeas

» Running separate instances of Multiplicative Weights algorithm for each group
and label combination

» Randomize between instances help with fairness

» Obtain optimal selection probability between instances by optimizing regret and
fairness bound

Algorithm
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end
Algorithm 1: Fairness-Aware MW algorithm

Figure 1: Fairness-aware RMW algorithm

Theorem 0.1: Upper Bound On Regret
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Theorem 0.2: Fairness Bound

In the stochastic setting, there exists g4, and g __ such that the absolute difference in FPR can be bounded as:
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Optimal

1

Balance Between Regret and Fairness

At each round, we solve the following optimization problem to minimize the

fairness and

regret upper bound:

q" = argmin ||A(Aq — b)||* ©

where X is a vector of balancing the importance of equalized FPR, equalized

FNR and regret that can be provided on a case-by-case basis based on

different potential applications.

Experiments

The set of c
Regression (
Multi-Layer
splitting the
simulations,

with [1], wh

assifiers JF in our hypothesis sets are as follows: Logistic

_R), Linear SVM (L SVM), RBF SVM, Decision Tree (DT),
Perceptron (MLP). We pre-trained each classifier for each trial by
data set, with 70% for training and 30% for testing. During the
the examples in the testing set arrived one by one. We compare

ich achieves equalized error rates by running seperate instance of

MW algorithm for each sensitive group.
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» Improvement in fairness both in terms of equalized FPR and FNR, along

with a sma

Il increase in regret

» Randomization help overcome biases of experts
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