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Abstract

In this paper, we try to accomplish approximate group fairness in an online decision-
making process where examples are sampled i.i.d from an underlying distribution,
which could be useful for implementing new public policy. Our work follows
from the classical learning-from-experts scheme, extending the Randomized Multi-
plicative Weights algorithm by keeping separate weights for label classes as well
as groups, where the probability of choosing each weights is optimized for both
fairness and regret.

1 Introduction

Recently, there have been growing concerns about potential bias and discrimination in machine
learning models. In many situations, machine learning may accentuate preexisting human biases,
affecting policy-driven decision making in various areas including policing, college admissions, and
loan approvals. Ideally, ensuring fairness via a mathematical framework would not only prevent
prejudice within algorithms and models, but also help quantitatively overcome human biases. This
possibility has motivated researchers in the machine learning community to develop numerous
methods for making models fair. There have been many existing work on achieving fairness on a
pre-existing dataset. Zafar et al. (2017) incorporates equalized odds as a constraint while solving
optimization problems, while Hardt (2016) removes discrimination at post-processing steps.

One thing that differentiates policy-driven machine learning is that new public policies are often
implemented in a trial-and-error fashion, as data might not be available upfront. Thus it is important
to have a system that makes accurate and fair real-time decisions. Moreover, designing new public
policy usually involves bringing together different parts with diverse and even conflicting goals. It
is also generally accepted that there is often a trade-off between predictive accuracy and fairness
Corbett-Davies et al. (2017).

At the group level, fairness can be defined as balancing some statistical metrics approximately across
different demographic groups (such as gender groups, racial groups, etc.). Equalized odds Zafar et al.
(2017), or "disparate mistreatment," requires that no error type is disproportionate for any one or

more groups. This could be achieved by equalizing false positive rates, commonly referred as equal
opportunity Hardt (2016), or equalizing classification errors. A predictor exhibits equalized odds if it
achieves both an equalized false-positive rate (FPR) and an equalized false-negative rate (FNR).

In this paper, we consider a setting where individuals arrive in a sequential and stochastic manner
from an underlying distribution, and the goal is to make real-time decisions fair by combining
decisions from experts. This setting could be useful for implementing new policies in many areas,
including improving the fairness of clinical trial participants recruitment or online loan applications.
The algorithm we propose is a meta algorithm and can be used as a central coordinator to fairly
combine different parts of the system. We demonstrate the performance of the algorithm on real data
sets commonly used by the fairness community.
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2 Preliminaries and Model

2.1 Online Classification with Sensitive Attribute

We consider a binary classification problem where Y = {0, 1}, and we assume that there is a finite set
of classifiers F to choose from, where F = {f1, ..., fd}. As is typical in an online learning setting,
the algorithms run through rounds t = 1, ..,T . At each round t, the classifier receives a joint example
vector (xt, zt) ∈ Rn, where xt are the unprotected attributes and zt are the protected or sensitive
attributes. We consider the case where there are two sensitive groups Z = {A,B}, with a generic
element denoted as z. We denote the base rates for outcomes as µz,+ = P(Y = 1|Z = z).

An important metric of online learning is regret, which compares the performance of the algorithm
with the best expert in hindsight. At each time step t, the classifier first produces ŷt = f t(xt, zt),
a predicted label for the input example. Then, at the end of the round and always after having
produced its prediction, it observes the true label yt and suffers a loss `(ŷt, yt). After T rounds,
regret is formally expressed as Regret(T ) =

∑T
t=1 `(f

t(xt, zt), yt)− inff∈F
∑T

t=1 `(f(x
t, zt), yt)

where the first term is the cumulative loss of the algorithm, and the second term is the cumulative
loss of the best fixed classifier in hindsight. The typical goal of online learning is to design an
algorithm that achieves sub-linear regret compared with the best hindsight over the T rounds; i.e.
lim

T→∞
Regret(T )

T = 0. In this paper, we add in a fairness constraint, which requires the online learning

algorithm to satisfy an approximate ε-fairness on average.

Definition 2.1 (ε-fairness) A randomized algorithm satisfies ε-fairness if:

|E[Ŷ = 1|Y = 1,Z = A]− E[Ŷ = 1|Y = 1,Z = B]| ≤ ε

2.2 Randomized Multiplicative Weights Algorithm

The Multiplicative Weights (MW) Arora et al. (2012) method is a frequently used meta-algorithm
for achieving no-regret by following the experts. In the MW algorithm, a decision maker has a choice
of d experts. We denote the probability that classifier i being selected at round t as πt

i . Initially, each
classifier i has an even chance of being selected. After each round of decisions, the decision maker
maintains weights on the experts based on their performances so far. Higher weights indicate a higher
chance of being selected in the next round.

Arora et al. (2012) bounded the total expected loss of the MW algorithm by the total loss of the best
experts with the following theorem:

Theorem 2.1 Assume that the loss `ti for classifier i at round t is bounded in [0,1] and η ≤ 1
2 . Then

after T rounds, for any classifier i among the d classifiers we have:

T∑
t=1

`tπt ≤ (1 + η)

T∑
t=1

`ti +
ln d

η

This powerful theorem shows that the expected cumulative loss achieved by the MW algorithm is
upper bounded by the cumulative loss of the best fixed expert in hindsight asymptotically. In other
words, the MW algorithm achieves sub-linear regret.

2.3 Randomized Multiplicative Weights Algorithm With Fairness

Blum et al. (2018) proposed a group-aware version of the MW algorithm to achieve equalized error
rates in an adversarial setting. Their idea was to run separate instances of the original MW algorithm
on each group, and they demonstrated that this is necessary to achieve equalized error rates across
groups.One potential drawback of the group-aware algorithm is that it only bounds the performance
of the overall algorithm errors for each group, without a guarantee of how the errors will distribute
across the label classes. In order to satisfy equalized odds, we also need a bound on the number of
false positives and false negatives made by the algorithm on each group.

Our proposal extends Blum’s Group-aware MW algorithm to Fairness-Aware RMW by keeping a
table of weights for each possible 3-tuple (f , z, y) with f ∈ F , z ∈ {A,B} and y ∈ {+,−}. At each
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round, we maintain a probability distribution of selecting different copies of weights. We indicate the
probability of selecting wf ,z,+ as qz,+, and the probability of selecting wf ,z,− as qz,−. As shown in
the fairness bound later, qz,+ and qz,− can be explicitly set to balance regret and fairness loss of the
algorithm.

Thus we propose the following variant of the MW algorithm:

Initialize w1
f ,z,k = 1 ∀f , z, k, and q1z,k = 1

2 ∀z, k
for t← 1, ...,T do

Each classifier obtains ŷtf
Obtain the optimal q∗ according to equation 4

πt(f |zt) =


wt

f,zt,+∑
f∈F

wt
f,zt,+

with probability qzt,+

wt
f,zt,−∑

f∈F
wt

f,zt,−
with probability qzt,−

Select classifier f according to probability πt and update the regret
Obtain loss `tf = `(ŷtf , y

t) for each classifier f

Update weights wt+1
f ,z,k = wt

f ,z,k(1− η)
`tf1{z

t=z}1{yt=k} ∀f , z, k
end

Algorithm 1: Fairness-Aware MW algorithm

Lemma 2.2 (Upper Bound) Let αt
z,− =

∑
f∈F

wt
f ,z,−∑

f w
t
f ,z,−

· `tf ,z,+ −
∑
f∈F

wt
f ,z,+∑

f w
t
f ,z,+

· `tf ,z,+ and

αt
z,− defined similarly. Thus the expected total loss of the algorithm is:

E[L] ≤ (1 + η)Lf + 4
ln d

η
+ α (1)

where α =
∑

z∈{A,B},y∈{+,−} qz,y
∑

t α
t
z,y

In the algorithm 1, since the learner only knows the group but not the label when it makes a decision,
it selects by sampling from the estimated label estimation. Therefore, at each round, the losses
the learner obtains can be decomposed to the losses of original MW algorithm and the losses from
choosing the wrong copy of weights when selecting classifiers due to randomization (as the extra
α term). We argue that randomization is the key to improving fairness on a biased distribution. We
omit the proof due to space constraints.

Theorem 2.3 (Fairness Bound) In the stochastic setting, there exists qA,− and qB,− such that the
absolute difference in FPR can be bounded as:

Ex,y,z

[
E[LA,−]

CA,−
− E[LB,−]

CB,−

]
≤ (1 + η − γ(η))Ex,y,z

[
Lf∗(B,−),B,−

CB,−

]
+ ε(1 + η)+(

qA,− ·
∑

t α
t
A,−

p · (1− µA,+) · T
−

qB,− ·
∑

t α
t
B,−

(1− p) · (1− µB,+) · T

)
(2)

For the fairness bound, since αt
z,y and µz,+ can be tracked and estimated, the last two terms involving

qA,− and qB,− can be cancelled out by specifically setting qA,− and qB,− at each round. we have:[−∑t α
t
A,+

pµA,+T

∑
t α

t
B,+

(1− p)µB,+T

] [
qA,+

qB,+

]
= 0. (3)

We can obtain something similar for the upper bound for regret.

Optimal balance between regret and fairness At each round, we solve the following optimization
problem to minimize the fairness and regret upper bound:

q∗ = argmin
q
||λ(Aq− b)||2 (4)

where λ is a vector of balancing the importance of equalized FPR, equalized FNR and regret that can
be provided on a case-by-case basis based on different potential applications.
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3 Experiments

We test our algorithms on the Adult, German Credit and datasets, all of which are commonly used
by the fairness community. "Adult" consists of individuals’ annual income measurements based
on different factors. In the "German Credit" dataset, people applying for credit from a bank have
been classified as "good" or "bad" credit risks based on their attributes. "COMPAS" (Correctional
Offender Management Profiling for Alternative Sanctions) provides a likelihood of recidivism based
on a criminal defendant’s history and other aspects.

The set of classifiers F in our hypothesis sets are as follows: Logistic Regression (LR), Linear SVM
(L SVM), RBF SVM, Decision Tree (DT), Multi-Layer Perceptron (MLP). We pre-trained each
classifier for each trial by splitting the data set, with 70% for training and 30% for testing. During
the simulations, the examples in the testing set arrived one by one. In practice, crafting policy might
involve balancing the effects of multiple parts of systems with diverse goals. Thus, in the experiment,
we did not explicitly require that each individual classifier satisfies ε-fairness, and each classifier
could be biased.

For each data set, the first plot shows the discrepancy of averaged regret between the algorithm and
the best classifiers in hindsight, the second plot shows the absolute differences of FPR between the
two groups. Results depicted in figures show a general improvement in fairness over Blum’s, both in
terms of equalized FPR and FNR, along with a small increase in regret. In all datasets, difference
in FPR and FNR are lower than the group-aware MW algorithm. This justifies the use of different
instances of the MW algorithm for each subset of group and label combination. Though the standard
deviation (the shadowed part) is larger for smaller data set(german), there is still a trend towards
convergence. As a result of our proposed method, the probability distribution q for sampling each
instance of the weights (at label level) can be adjusted to obtain the optimal probabilities that satisfy
the required constraints, which can be provided a on case to case basis.

Future research could take on the more realistic case in which feedback from the implemented policy
is delayed for some number of rounds. For example, during the college admissions process, the
performance of a student is generally evaluated at the end of each term, while colleges typically offer
admission decisions in mid-year. Similarly, when an individual applies for a loan, the bank often
needs to wait for some time to know whether the applicant will default or not.
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Figure 1: Comparison of Average Regret
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