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Abstract

Recent work has documented instances of unfairness in deployed machine learning
models, and significant researcher effort has been dedicated to creating algorithms
that intrinsically consider fairness. In this work, we highlight another source of
unfairness: market forces that drive differential investment in the data pipeline
for different groups. We develop a high-level framework, based on insights from
learning theory and industrial organization, to study this phenomenon. First, we
show that our model predicts unfairness in a monopoly setting. Then, we show that
under all but the most extreme models, competition does not eliminate this tendency,
and may even exacerbate it. Finally, we consider two avenues for regulating a
machine-learning driven monopolist - relative error inequality and absolute error-
bounds - and quantify the price of fairness. Our results suggest that mitigating
fairness concerns may require policy-driven solutions, not only technological ones.

1 Introduction

As machine learning has become more integrated into products, markets, and decision-making
throughout society, researchers, practitioners, and activists have identified many instances of unfair-
ness in predictions or decisions made or influenced by machine-learned models [5, 9, 18, 19, 22],
including in extremely high stakes settings like object recognition systems for autonomous vehicles
[22] or healthcare treatment assignment [19]. With the hope of mitigating unfairness, researchers
have engaged in empirical and theoretical investigations to understand the reasons behind unfairness
including historical bias [17] and selection bias [14] in training data; feedback loops [17]; sample size
disparity [7]; the inability to fit group-specific models for legal, ethical, or practical reasons [15]; and
use of the wrong loss function [19]. Researchers have developed many innovative technical solutions
to these problems (see, e.g. [1, 3, 6, 8, 10, 11, 23]), yet unfairness in practice persists.

We highlight a simple but important point: while technical solutions to unfairness are certainly
necessary, mitigating unfairness in practice may require tackling the economic incentives driving
unfairness. In this paper, we are interested in data-driven markets with disjoint consumer groups and
the error inequality between these groups. Our framework is built on learning theory and industrial
organization; while stylized, it captures salient market features and elides previously described
sources of unfairness. We first show that a monopolist will invest less in data collection (and thus
model accuracy) for minority groups, where minority status is defined by a group’s market power
and cost of data collection. We then show that this phenomenon is not mitigated by introducing
a competing firm. Finally, we analyze the effect of regulatory constraints on the monopolist. We
conclude by discussing the policy implications of these results.
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2 Modeling Framework

At a high level, our models consist of firms and consumers. Firms choose how much data to purchase
(modeled as a continuous quantity for simplicity); they use this data to create a machine learning
model, which is then used to serve consumers. Consumers are split into non-overlapping groups
representing their market segment; they choose which firm, if any, to use based on the performance
of the models for their own group. Because users do not know the realized error of firms’ models,
they use the worst-case excess error guarantees implied by the firms’ data choices as their only proxy
for performance. Firms’ profits are their market share less their costs invested in data collection. We
assume that firms have unlimited budget and that the data sources are group-specific and potentially
infinite; we also assume that firms make no distributional similarity assumptions across groups, and
so must train models separately rather than engage in transfer learning. These assumptions, taken
together, eliminate many causes of unfairness previously highlighted in the literature.

Using −i to denote Firm i’s competitors (if any), we can write profit maximization problem as:

max
Mi

πi(Mi,M−i) = max
Mi

∑
g

µgDgi(εgi(Mgi), εg,−i(Mg,−i))− C(Mi), (1)

potentially subject to constraints imposed by regulation. Here, Mi is the vector of choices of data for
each group; εgi(Mgi) is the implied worst-case error guarantee for group g under Firm i’s model;
µg captures the total market size of Group g; Dgi is the share of group g that Firm i captures;
and C(Mi) is the total cost Firm i must pay for its data choices. If the firm has no competitors,
profit maximization is a simple optimization problem; otherwise, the firm must take into account
competitors’ actions. In the multi-firm case, we look for Nash equilibria (see e.g. [12] for more on
game theory). In either case, Dgi will play a role in the form of the optimal solutions, but our results
are qualitatively similar for all but the most unrealistic models of demand we study.

For simplicity, we model the link between data purchase and error rates using the PAC model of
learning [16]. Firms can sample (potentially infinitely many) independently drawn feature-label
pairs from fixed distributions Dg; we assume these Dg are the relevant distributions consumers from
each group care about. Firms have access to a hypothesis classH; each hypothesis has its own risk
R(h) = Ex,y∼Dg [h(x) 6= y]. We allow both the realizable setting, when there is some h ∈ H with
risk zero, as well as the agnostic setting; PAC-learning theory tells us that in the agnostic setting,
if a hypothesis class has finite Vapnis-Chervonenkis dimension (VC), then with probability 1 − δ,
empirical risk minimization will output a hypothesis h such that:

R(h)− min
h′∈H

R(h′) ≤ K
√
dH + log(1/δ)

M
,

where dH is the VC dimension ofH and K is a universal constant. (See [20] for more on empirical
risk minimization, VC dimension, and the various kinds of PAC learning.) A similar statement holds
without the square root in the realizable setting, and other settings can be modeled with different
learning rates. Moreover, these bounds are tight in the worst case. Thus, we can link firms’ group-
specific worst-case excess error εgi to purchased data points as εgi = Cgi/M

1/q
gi , where q captures

the learning rate and Cgi is a group-specific constant. Then, assuming that firms pay some fixed
startup cost for each group φgi and linear (possibly differing marginal costs) cgi per datapoint, we can
write the write firms’ costs as a function of error: C(εgi) = γgi/ε

q
gi, where γgi captures the constants.

3 Monopoly

We start with the case where there is one firm in the market and demand is linear. That is:
Dg(εg) = αg − βgεg,

where 0 < β ≤ α ≤ 1. We can also consider piecewise linear demand (capped at 1 and floored at 0)
that does not have such restrictions; this does not qualitatively affect the results, so we omit it here.
Now, under linear demand, we can write the firm’s problem as

max
ε

∑
g∈G

µg (αg − βgεg)−
∑
g

(
φg + γg/ε

q
g

) . (2)
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Simple calculus and the fact that profit is concave yield Lemma 1. We defer proof of this and all
other omitted proofs to the appendix.
Lemma 1. At any interior optimal solution εM , linear demand and learning rate q imply that ∀g ∈ G:

εMg =

(
qγg
µgβg

) 1
q+1

. (3)

In this paper, we will only be concerned with interior optimal solutions and equilibria, since solutions
in which firms choose to decline from investing entirely in a given group will obviously engender
inequality. Equation 3 intuitively says that a group’s worst-case excess error rate will vary proportion-
ally with the cost of acquiring data for that group and inversely with its market power (that is, the
product of µgβg). Simply taking the ratio of errors leads us to our first inequality result, Theorem 1:
Theorem 1 (Monopoly Inequality). Suppose a monopolist with learning rate q faces linear demand.
Then in any interior optimum, for every pair of groups g and g′, the error inequality is given by:

εMg
εMg′

=

(
µg′βg′γg
µgβgγg′

) 1
q+1

.

Theorem 1 demonstrates that under a monopoly, groups that have relatively smaller market power and
higher cost of data acquisition will suffer relatively greater error rates. Of course, monopoly favors
the monopolist at the expense of consumers, and the canonical remedy is more competition. Can
competition also mitigate between-group error inequality? The next section explores this possiblity.

4 Competition

Suppose instead that two firms compete in the market. Several natural models of demand, along a
spectrum of rationality, could capture consumer behavior. Here we consider a proportional split split
demand, similar to the well-known Tullock contest [21]. We discuss other models in the appendix.

With two firms, proportionally split demand with competition exponent ρg in each group is given by:

Dgi(εgi, εgj) = 1−
ε
ρg
gi

ε
ρg
gi + ε

ρg
gj

=
ε
ρg
gj

ε
ρg
gi + ε

ρg
gj

,

and the firm’s problem becomes

max
εi

∑
g∈G

µg
ε∗gj

εgi + ε∗gj
−
∑
g∈G

(
φgi +

γgi
εqgi

) , (4)

where ε∗gj is its opponent’s (equilibrium) choice of error for group g. Lemma 2 describes equilibrium.
Lemma 2. Suppose two firms compete for proportional demand with parameters q and ρ. There
exists a range of market and cost structure parameters for which (ε∗gi, ε

∗
gj) is an equilibrium, where

ε∗gi =

(
qγgi
ρgµg

) 1
q (γqgi + γqgj)

2
q

γqgiγ
q
gj

=

(
q

ρgµg

) 1
q (γqgi + γqgj)

2
q

γ
1− 1

q

gi γqgj

.

For a (nonempty) subset of this parameter range, this equilibrium is unique.

The parameter range referenced of Lemma 2 ensures that it is not a best response for firms to choose
to invest no data collection at all in any group; outside this range, there are equilibria in which firms
do not invest in data collection for some groups, which will clearly lead to inequality. For brevity, we
do not precisely specify these conditions, but they simply require that firms’ cost structures are not
too different and that the fixed costs are not too large relative to the total possible gain.
Theorem 2 (Inequality Under Proportional Demand). Suppose two firms with learning rate q compete
under proportional demand. Then in any interior equilibrium error inequality is given by:

ε∗gi
ε∗g′i

=

(
ρg′µg′

ρgµg

) 1
q

· F (γgi, γgj , γg′i, γg′j , q),

where F (γgi, γgj , γg′i, γg′j , q) =
(γqgi+γ

q
gj)

2
q

γ
1− 1

q
gi γq

g′j

/ (γq
g′i+γ

q

g′j)
2
q

γ
1− 1

q

g′i γq
g′j

.
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Theorem 2 may look complicated, but the qualitative interpretation is simple: like in Theorem 1,
the ratio of error rates between groups is inversely related to the ratio between their market powers
(where the competition exponent in each market plays the previous role played by elasticity). In fact,
the dependence under this model is worse (since the exponent is larger).

5 Regulation

In this section, we consider regulating a monopolist with the intent of improving the outcome
for a minority. For clarity of exposition, we assume that there are two groups, A and B, with
µAβA ≥ µBβB and γA ≤ γB . We consider two types of regulation: the first is the constraint that
∀ g, g′, εg/εg′ ≤ (1+χ), which we call the approximately equal error constraint; the second requires
that ∀g, εg ≤ χ, which we call the absolute error guarantees. The firm’s problem then becomes that
in Equation 2 but subject to the imposed constraints. We begin with the following useful Lemma:
Lemma 3 (Saturation). If the regulator applies equal or absolute error constraints, and the error
constraints change the firm’s behavior, then the constraints will be saturated for one or both groups.

Formally, Lemma 3 says that in the equal error rate case, the monopolist will set εRB = (1 + χ)εRA,
and under absolute error guarantees, will set εRB to χ (and possibly εRA to χ as well). We can then
substitute these into the firm’s problem to find the new optimal solutions εRA and εRB , and obtain:
Theorem 3 (Price of Fairness). Under both type of regulations, the error rate of the minority group
improves. That is, εRB ≤ εMB . Under equal error constraints, εRA ≥ εMA . But, for a fixed ratio µB

µA
, a

simple upper bound on εRA/ε
M
A is:

εRA
εMA
≤
(
1 +

γB
γA

1

1 + χ

) 1
q+1

Under absolute error guarantees, by contrast, εRA ≤ εMA – the minority pays no ‘price of fairness’.

Society may wish to maintain some profits as an incentive to innovate; Theorem 4 shows the limiting
behavior of the ratio of unconstrained (πM ) and regulated πR monopoly profits. It also says that
there is a minimum error value the regulator can guarantee (without making the firm unprofitable).
Theorem 4 (Firm Price of Fairness). Under both types of regulation, the monopolist pays a price of
fairness via lost profit; however, for any constant r and regulation-specific constants C, we can write:

lim
µB ,µA→∞
µA=rµB

πM

πR
= 1 lim

µB→0

πM

πR
= C > 1

Under absolute error guarantees, there exists some minimum error ε0 the monopolist can guarantee.

Taken together, Theorems 3 and 4 elucidate the (quantifiable) tradeoffs that may influence whether
and how society chooses to regulate for fairness. We highlight that that while these quantities
are important inputs to this choice, they may ultimately be trumped by ethical, practical, or other
considerations.

6 Discussion

In this work, we identify economic incentives leading to unfairness in data-driven markets. At a
high level, we show that monopolists are incentivized to invest less in minority groups (as measured
by market size, elasticity, and data costs) because they are less profitable; that competition does
not mitigate this incentive towards inequality; and that judicious regulation can improve outcomes,
potentially at a cost in terms of profits or, depending on the regulation, error rates for the majority.

We view this paper as highlighting an important and understudied point of view, but certainly not as
the last word. We made many choices that situate our models in particular contexts; for example, the
assumption that firms and users benefit from improved accuracy does not capture many settings that
currently are or will soon be urgent domains of adjudicating fairness concerns - machine learning
in loans, insurance, and facial recognition systems are obvious cases, but the potential landscape,
and consequent scope for unfairness, is vast. We hope that future work will explore other settings
and further clarify the possibility - and perhaps necessity- of leveraging policy tools in addition to
algorithmic solutions in order to combat unfairness in machine learning.
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A Appendix

A.1 Additional Models of Competition

We briefly discuss two other models of competition. We call the first multilinear demand; it is a simple
generalization of linear demand in which a firm’s demand diminishes with its own error rate and rises with the
error rate of its competitor. Formally, we writeDgi(εgi, εgj) = αgi−βgiεgi+λgεgj ,where 0 < λg < βgi ≤ αgi
and αgi + λg ≤ 1. This model is analogous to multilinear demand in price as in [2]. Conceptually, this model
makes sense if consumers as a whole view firms’ products as imperfect substitutes [4]; for example, they may
have some brand loyalty, so that some consumers will use the firm with higher error (up to a point). Under
this model, firms have dominant strategies (that is, their optimal strategies don’t actually depend on what the
other firm does), that work out to acting as if they are ’mini-monopolists’ of their own market segments. In
concordance with this formal similarity, firms make the same error and inequality choices as a monopolist facing
the same linear demand - assuming, of course, that both firms make positive profit. If this assumption doesn’t
hold, then one or both firm may not invest in some group at all, but again, that trivially will engender unfairness.

A different conclusion will be reached if we assume that the firm with lower error captures all the market. This
is analogous to Bertrand price competition [13] and, like in Bertrand competition, there can be no equilibrium,
as there is alway an incentive to slightly under cut the other firm. We can remedy this by assuming some ζg
tolerance - when error levels drop below ζg , consumers split their allegiance as if the firms produce the same
error. In this case, there is a unique interior equilibrium in which both firms set εg to ζg; then inequality will be
given by εg

εg′
=

ζg
ζg′

. That is, in this model, market power no longer affects inequality! However, this model, like
the Bertrand model that it inherits its properties from, should be considered extremely unrealistic in practice; it
requires that all consumers can perfectly distinguish, and uniquely care about, arbitrarily small error differences
(above ζg). Moreover, the conclusions of the Bertrand model - duopolies pricing as if they were price-takers in a
perfectly competitive market - clashes with observations of real-world duopolies; the analogous conclusion of
the Bertrand-like model in data-driven markets is similarly dubious.

A.2 Deferred Proofs

Proof of Lemma 1. Recall that

π(ε) =
∑
g∈G

µg (αg − βgεg)−
∑
g∈G

(
φg +

γg
εqg

)
.

Now, we notice that this profit function is separable into the sum of profits from each market. Differentiating
with respect to εg separately and setting to zero,we arrive at the first-order conditions:

∂π

∂εg
= −µgβg +

qγg

εq+1
g

= 0.

Solving this equation yields ε∗g . Profit is concave on its domain since ∂
∂ε2g

π = −(q)(q − 1)γgε
−q−2
g < 0,

hence ε∗g is a maximizer of πg . If the profit at ε∗g is larger than ε∗g = 1, then ε∗g will be the global optimum, as
limεg→0 π = −∞.

Notice that if, for all g, πg
(
ε∗g
)
> 0, πg

(
ε∗g
)
> πg(1), and ε∗g < 1, then the interior optimum exists and is

unique.

Proof of Lemma 2. Under the proportional split model of demand, each firm’s profit depends not only on its
own action, but also that of the other firm. Again, this calls for a game theoretic notion of solution. We look for
a pure strategy Nash Equilibrium. Recall that in an equilibrium, both firms must be best-responding and have no
incentive to deviate. That is, both strategies must be best-responses to each other.

To find an equilibrium, we first find the best-response of Firm i, given the choices of Firm j. Fixing εj , the profit
of Firm i given the choice of ε is as follows:

π(εi, εj) =
∑
g∈G

[
µg

ε
ρg
gj

ε
ρg
gi + ε

ρg
gj

]
−
∑
g∈G

φgi +
γgi
εqgi

Taking the derivative:

∂π

∂εgi
= −µgερggj (ε

ρg
gi + ε

ρg
gj )
−2
(
ρgε

ρg−1
gi

)
+
qγgi

εq+1
gi
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Setting to zero yields the first-order condition:

qγgi

εq+1
gi

=
ρgµgε

ρg−1
gi ε

ρg
gj

(ε
ρg
gi + ε

ρg
gj )

2
=⇒

ρgµgε
ρg+q
gi ε

ρg
gj

qγgi
= (ε

ρg
gi + ε

ρg
gj )

2

Symmetric logic will apply to Firm j. Bu then using the fact that the first order condition must hold simultaneously
for both firms, we have that in equilibrium:

ρgµgε
ρg+q
gi ε

ρg
gj

qγgi
=
ρgµgε

ρg+q
gj ε

ρg
gi

qγgj
=⇒ εgj = εgi

(
γgj
γgi

) 1
q

That is, equilibrium requires a specific relationship between firms’ choices. Substituting this back in, we have:

ρgµgε
ρg+q
gi ε

ρg
gi

(
γgj
γgi

) ρg
q

qγgi
=

(
ε
ρg
gi + ε

ρg
gi

(
γgj
γgi

) ρg
q

)2

= ε2ρgi

(
1 +

(
γgj
γgi

) ρg
q

)2

Solving gives that

εgi =

 qγgi
ρgµg

(
γgi
γgj

) ρg
q

(
1 +

(
γgj
γgi

) ρg
q

)2
 1
q

=

 q

ρgµg

(
γ
ρg
q

gi + γ
ρg
q

gj

)2

γ
ρg
q

gi γ
ρg
q

gj


1
q

(5)

Equation 5 gives the critical point, but we must compare its profits with endpoints. The profit can be written as:

πgi(ε
∗
gi, ε

∗
gj) =

(
q

ρgµg

) 1
q (γ

q
gi+γ

q
gj)

2
q

γ
1− 1

q
gi γ

q
gj(

q
ρgµg

) 1
q (γ

q
gi+γ

q
gj)

2
q

γ
1− 1

q
gj γ

q
gi

+
(

q
ρgµg

) 1
q (γ

q
gi+γ

q
gj)

2
q

γ
1− 1

q
gi γ

q
gj

− γgi
εqgi

=
1

1 +

[
γ
1−ρg/q−q
gj

γ
1−ρg/q−q
gi

]ρg − γgi
εqgi

Substituting back in εqgi, it is:

1

1 +

[
γ
1−ρg/q−q
gj

γ
1−ρg/q−q
gi

]ρg − γgiρgµgγ
ρg
q

gi γ
ρg
q

gj

q

(
γ
ρg
q

gi + γ
ρg
q

gj

)2

For this interior equilibrium to hold, it must be that π∗gi(ε
∗
gi, ε

∗
gj) ≥ π∗gi(ε′, ε∗gj) for all other choices of ε∗gj . Note

that πgi,ε∗gj (ε) is continuous away from 0. Moreover, for small enough ε0, πgi,ε∗gj (ε) < 0, since the market size
is bounded by costs can be come arbitrarily negative. Hence, we can consider the maximizing this function on
the compact set [ε0, 1]. Since εgi,ε∗gj (ε) is continuous on this set, and ε∗gi satisfies the first-order condition, the
only possible maxima of this function are ε0 or 1. At ε0, the firm is making zero profits, so any choice with
positive profits eliminates it. At ε = 1, the firm can also choose to not invest anything in data (and receive the
same revenue but no data costs), so the condition that makes πgi,ε∗gj (ε

∗
gi) > πgi,ε∗gj (1) will be sufficient to make

this an equilibrium.

This condition holds if

1

1 +

[
γ
1−ρg/q−q
gj

γ
1−ρg/q−q
gi

]ρg − γgiρgµgγ
ρg
q

gi γ
ρg
q

gj

q

(
γ
ρg
q

gi + γ
ρg
q

gj

)2 ≥ πgi(1, εgj∗) (6)

We call Inequality 6 the nondeviation condition. We can write:

πgi(1, εgj∗) =

(
q

ρgµg

) 1
q (γ

q
gi+γ

q
gj)

2
q

γ
1− 1

q
gi γ

q
gj

1 +
(

q
ρgµg

) 1
q (γ

q
gi+γ

q
gj)

2
q

γ
1− 1

q
gi γ

q
gj

=
1

1 +
(

q
ρgµg

)− 1
q (γ

q
gi+γ

q
gj)
−2
q

γ

1
q
−1

gi γ
−q
gj

,
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so Inequality 6 asks that

1

1 +

[
γ
1−ρg/q−q
gj

γ
1−ρg/q−q
gi

]ρg − γgiρgµgγ
ρg
q

gi γ
ρg
q

gj

q

(
γ
ρg
q

gi + γ
ρg
q

gj

)2 ≥
1

1 +
(

q
ρgµg

)− 1
q (γ

q
gi+γ

q
gj)
−2
q

γ

1
q
−1

gi γ
−q
gj

We have shown that if the nondeviation condition holds for each group and each firm, then (ε∗gi, ε
∗
gj) is a Nash

Equilibrium in pure strategies under proportionally split demand with competition exponent ρg in each group
and learning rate q. If a further conditions holds, namely that there exists a preferred strategy to non-investment
if the opponent does not invest, then the equilibrium is unique. Call this the investment condition: there exists
ε ∈ (0, 1) such that:

1

ερg + 1
− γgi

εq
>
µg
2
⇐⇒ εq − γgi(ερg + 1) ≥ µg ((ε

ρg + 1)εq)

2
. (7)

Equivalently, we need to ensure that:

εq − γgi(ερg + 1)− µg ((ε
ρg + 1)εq)

2
≥ 0 (8)

has a solution in (0, 1). This will not always be the case, of course; when it is not, there is an equilibrium in
which both firms prefer not to invest in collecting data from one group at all, which certainly implies inequality.

Proof of Lemma 3. First, consider absolute equality guarantees. First, notice that Lemma 1 gives that if
µAβA ≥ µBβB and γA ≤ γB , then εMB > εMA (1 + χ). Fix any choice εRA. We claim that if εRB < (1 + χ)εRA,
the pair (εRA, ε

R
B) cannot be a constrained profit maximizer. There are two cases. Either εRB < εRA(1 + χ) < εMB ,

or εRB < εRA(1 + χ) but εMB < εRA(1 + χ). The latter case is trivial - by the separability of the profit function,
the feasible pair (εRA, ε

M
B ) would increase profits. Now consider the case that εRB < εRA(1 + χ) < εMB . Let

ε̃ = (1−α)(εRA, εRB)+α(εRA, εMB ). The profit function is concave, so Jensen’s inequality gives that for α ∈ [0, 1]:

π(ε̃) > (1− α)π(εRA, εRB) + α(εRA, ε
M
B ) ≥ π(εRA, εRB)

and by choosing α < εMB −(1+χ)εRA
εM
B
−εR
B

, ε̃ is indeed feasible.

Now consider absolute error constraints. First, note that the absolute error constraints are separable, so that the
firm’s problem is additively separable. That is, it can consider the populations separately. So consider population
g. If εMg ≤ χ, then the unconstrained optimal is less than the regulatory bound, so the regulation won’t change
the behavior of the firm. Thus if εRg 6= εMg , it must be that εMG > χ. Since εRg must be feasible, we must have
that εRg ≤ χ. Now suppose that εRg < χ.

Let ε̃g = (1− α)εRg + αεMg . Since πg is concave, Jensen’s inequality implies that

πg(ε̃g) = πg((1− α)εRg + αεMg ) ≥ (1− α)πg(εRg ) + απg(ε
M
g ) ≥ πg(εRg )

so moving to ε̃g can only improve the profits. ε̃g will be feasible if

ε̃g ≤ χ ⇐⇒ (1− α)εRg + αεMg ≤ χ

So choosing α <
χ−εRg
εMg −εRg

will suffice. (Notice that
χ−εRg
εMg −εRg

∈ [0, 1], since εMg > χ =⇒ εMg − εRg > χ− εRg ,
and both numerator and denominator are positive by assumption.)

But that means that if εRg < χ, we can find another point with strictly more profit. Thus, εRg was not optimal.

Proof of Theorem 3. First, we consider the equal error guarantee. Lemma 3 means that the regulated monopo-
list’s problem is equivalent to substituting (1 + χ)εA for εB in the original formulation. The solution to this new
formulation gives that εRA = q(γA+γB/(1+χ)

q)
µAβA+µBβB(1+χ)

.(
εRA
εMA

)q+1

=
q (γA + γB/(1 + χ)q) / (µAβA + µBβB(1 + χ))

qγA/(µAβA)
=
µAβAγA + µAβAγB/(1 + χ)q

µAβAγA + µBβBγA(1 + χ)

8



Now using the fact that εRA
εM
A

≥ 1 ⇐⇒
(
εRA
εM
A

)q+1

≥ 1 Now using the elementary fact that for positive x, y, z,

(x+ y)/(x+ z) ≥ 1 ⇐⇒ y ≥ z, we can see that(
εRA
εMA

)q+1

≥ 1 ⇐⇒ µAβAγB/(1 + χ)q ≥ µBβBγA(1 + χ) ⇐⇒ γB
µBβB

≥ γA
µAβA

(1 + χ)q+1

But recalling that the monopolist’s optimal solution is εMg = (
qγg
µgβg

)
1
q+1 , we can rewrite the previous inequality:

εMB
q+1 ≥ εMA

q+1
(1 + χ)q+1 ⇐⇒ εMB ≥ εMA (1 + χ)

which holds under our assumptions on market power and cost. A similar calculation will give that εRB ≤ εMB
under the same conditions.

An upper bound on εRA
εM
A

follows by diving εMA and εRA and dropping the term µAβA
µAβA+µBβB

< 1 from the product.

The claim for the absolute error guarantee follows directly from Lemma 3 – εRA ≤ χ, so if εMA > χ and the
constraint is saturated, then εRA = χ < εMA .

Proof of Theorem 4. Under equal error constraints, Lemma 3 implies that εRB = εRA(1 + χ). Then the regulated
monopolist’s problem is equivalent to the problem of a monopolist facing a single population with demand
µAα+µBα+B−µAβAεA−µBβBεB(1+χ), with costs φA+φB−γA/εqA−γB/(ε

q
A(1+χ)

q). Plugging
in the optimal solution for the monopolist’s problem from Lemma 1 and rearranging shows that the optimal

profit is given by pi∗(ε∗) =
∑
g∈G µgαg − (µgβg)

q
q+1 γ

1
q+1
g Q, where Q is a constant related to q. Thus, we

can write

MonPoF1+χ =

µAαA + rµAαB −Qµ
q
q+1

A

[
β

q
q+1

A γ
1
q+1

A + r
q
q+1 β

q
q+1

B γ
1
q+1

B

]
µAαA + rµAαB −Qµ

q
q+1

A

[
(βA + rβB(1 + χ))

q
q+1 (γA + γB

1
(1+χ)

q
)

1
q+1

]

Factoring out µA and using the fact that if µB →∞, µA →∞, we can see that this quantity tends to 1.

For the second claim, we can simply substitute in µB = 0 and factor out µAαA to get

lim
µB→0

MonPoF =
µAαA[1−Q

(
γA

µAαA

) 1
q+1

]

µAαA[1−Q
(
γA+γB/(1+χ)

1
q+1

µAαA

) 1
q+1

]

=
1−Q/qεMA

1−Q/qεMA
(
1 + γB

γA

1

(1+χ)
1
q+1

) 1
q+1

and the latter term is a constant above 1.

For the absolute error guarantees: Notice that profit and constraints are separable across groups, so the monopolist
can optimize separately. Thus, the monopolist can optimize each group separately. By the saturation lemma,
we can thus have three possibilities: neither constraint binds, the constraint on the minority group binds, or
the constraint on both groups bind (the constraint will not bind on the majority group without binding on the
minority group since εMA ≤ εMB ). If we write πg for the profit accrued solely from group g, then, we can write

that εR/εM will be 1 in the first case, πMA +πMB
πM
A

+πB(χ)
in the second case, or πMA +πMB

πA(χ)+π
χ
B

.

Now, suppose that µB , µA →∞ at a constant ratio. Lemma 1 implies that εMA , ε
M
B → 0. Hence, as the market

size grows, eventually εMB and εMA will be less than χ, so that εRB = εMB and εRA = εMA . Then in the limit,
case 1 obtains, so πM/πR → 1. For µB → 0, we will eventually be in either Case 2 or Case 3. Note that as
µB → 0, εMB will eventually be larger than χ, so the limit will be obtained at either Case 2 or Case 3. Notice
that as µB → 0, πB → 0; moreover, for small enough µB , the optimal choice for the unconstrained monopolist
eventually becomes to set error as high as possible (εMB = 1). Thus, in Case 2, we can write the πM/πR as:

lim
µB→∞

πM

πR
=

πA(ε
M
A )− γB − φB

πA(εA)M − γB/χq − φB
≥ 1
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Alternatively, if Case 3 obtains, then we can write:

lim
µB→∞

MonPoFχ =
πA(χ)− γB − φB

πA(χ)− γB/χq − φB
≥ 1

Finally, for the claim that there is some minimum error the monopolist can guarantee, First, by the saturation
lemma, when χ < εMA , then the optimal choice of the monopolist is (εRA, ε

R
B) = (χ, χ). then the profit can be

written as a function of χ:

π(χ) = µA(αA − βAχ) + µB(αB − βBχ)− φA − φB −
γA
χq
− γB
χq

(9)

Since π is concave and the global optimum is at (εMA , ε
M
B ), we know that decreasing χ will decrease eventually

decrease the attainable objective value (otherwise, the global maximum would not have been attained at
(εMA , ε

M
B )). The point at which objective value becomes 0 is the solution to 0 = µA(αA − βAχ) + µB(αB −

βBχ)− φA − φB − γA
χq
− γB

χq
. Multiplying by χq gives a polynomial equation whose solution can be found

via the quadratic or cubic formulas in the realizable or agnostic settings, respectively, or numerically for other
settings. If the solution ε0 is in [0, 1], then the above reasoning implies that the polynomial is negative for
χ < ε0.
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