Taking a Stance on Fake News

Towards Automatic Disinformation Assessment via Deep Bidirectional
Transformer Language Models for Stance Detection
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has had the unfortunate consequence of escalating what the United
Nations has called a global topic of concern: the growing prevalence

of disinformation. [1] Contnbutlons

Given the complexity and time-consuming nature of combating Developed a large-scale language model for stance detection via transfer

Y,

disinformation through human assessment, one is motivated to explore learning of a RoBERTa deep bidirectional transformer model [2] with
harnessing Al solutions to automatically assess news articles for the claim-article pairs via pair encoding with self-attention
presence of disinformation. A valuable step towards automatic .

| el ™ v _ State-of-the-art results on Fake News Challenge, Stage 1 benchmark [3]
iIdentification of disinformation is stance detection.
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Document Retrieval a

Gather relevant articles regarding claim from a
variety of sources

Reputation Assessment

Determine the trustworthiness of each article by
analyzing its linguistics, source, history, etc.

Dataset Figure 1: Automated Fact-Checking Process

Fake News Challenge, Stage 1 (2017) [3]
Estimate the stance of an article with respect to a claim. MethOdOIOgy

Data derived from Emergent dataset [4], sourced from RoBERTag g pre-trained model on five English-language corpora (>160GB)
the Emergent Project [5], a real-time rumour tracker - Tokenize input with byte-level byte-pair-encoding, add special tokens
created by Tow Center for Digital Journalism at Columbia. - Trim or pad claim or article (longest first) to fit maximum sequence length of 512
Training Set Test Set - Train for three epochs with learning rate of 2e-5, weight decay of 0.1, batch size of 8
Claim-Article Pairs (#) 49,972 25,413 - Trained on one NVIDIA 1080Ti using HuggingFace’s transformers library [6]
Unrelated (%) 73.13 72.20
Discuss (%) 17.83 17.57
Agree (%) 2 36 2 49 [CLS] Claim [SEP] [SEP] Article [SEP] Disgg:zg; g:gg
Disagree (%) 1.68 2 74 [PAD] .. [PAD] » Discuss: 0.10
512 Unrelated: 0.02
Table 1: Statistics of the FNC-I Dataset tokens

Figure 2: RoBERTa Model Training Setup

Weighted Accuracy (%) = 0.25 x ACC,gjgteg + 0.75 X ACCqiance
Re S u It S where: ACC,qateq - DiNAry accuracy across related {agree, disagree, discuss} and unrelated claim-article pairs

Accg.nce - accuracy for claim-article pairs in related classes only P ro posed I m p I e m e n tat i o n

Method Weighted Accuracy (%)  Accuracy (%) : iy s : :
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Borges ot al. [11] 53,32 39,21 Ethical Considerations
Zhang et al. 2018 [12] 86.66 92.00 s Limitations
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Zhang et al. 2019 [14] 88.15 93.50 W f _ I )
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Table 2: Performance of various methods on the FNC-I benchmark. First and second Figure 3: Confusion matrix for proposed
groups are methods introduced during and after the challenge period, respectively. method. Ri sks:
T — 50 Number o E | » Codification of unintended biases (gender, racial) into
umbpber o1 10Ken In EXamplie ccuracC o umber o1 EXxamples i i . . - .
y Maximum — Weighted . | acy contextual word embeddings through biased pre-training
<129 92.05 2,904 Number of  Accuracy o . .
159.056 93.90 3 606 Tokens (%) (%) methods, finetuning on FNC-1 dataset [15]
| | « Prone to adversarial attacks [1
257-384 95.07 6,328 128 89.52 93.46 Prone to adversarial attacks [16]
385.519 95.11 4763 256 89 .54 93.48 Unintended Negative Outcomes:
~512 92 23 2812 512 90.01 93.71 » Interpreted as a definitive answer, rather than an estimate
All 93 71 55 413 | of veracity — individuals defer own judgement to algorithm
: ‘ Table 4: Effect of maximum sequence length of .. : : . .
_ _ _ - _ RoBERTa model on Weighted accuracy and ¢ Ma“ClOUS aCtOrS Se|eCtIV6|y pI‘OmOte ClalmS mISC|aSSIerd by
Table 3: Effect of claim-article pair sequence length of FNC-I test set on classification classification accuracy. :
accuracy of RoBERTa model, with a maximum sequence length of 512. model but adhere to their own agendas
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