. Learning to perceive smell automatically is

becoming increasingly important for a vari-
ety of olfaction applications.

. Applications in monitoring quality of food

and drinks for healthy living.

. Machine learning models are trained on

sensor data collected to smell a variety ot
things.
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CONTRIBUTIONS

Our main contributions are:
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1. We propose a weakly supervised domain P

adaptation framework where we demon-
strate that by building multiple models in
a mixture of supervised and unsupervised
framework, we can generalise effectively
from one domain to another.

2. We evaluate our approach on several

argmin F(61,05,03) =

RESULTS

Learning tosmell for wellness

4n

1

TRAINING OBJECTIVES
1

i=1....4n L(yi7 f(Xi3 92)‘

% 2 i1, N LW, [(Xi501))))

N —+ 4n Zz’:1....N+4n L(yi, f(Xi;03)]

However, models trained on one domain datasets of beef cuts and quality collected Source-Target | LR AB SVM S55[2] DNN LSTM R-DANN  Ours
rarely performn well in another stnilar but —orocs different conditions and emviron. 152 | 1959 6943 1126 3624 595 4602 4718  79.85
o P e ments[1]. l1—31 1o | 4658 2200 3360 14.65 530 3755 4486  65.07
re 1o — 3110 | 3397 5473 2589 1359 797 4121 3761  64.39
Shift in the distribution of the input fea- 3. We empirically show via several experi- T3 31-12 36.65 54.73 26.37 13.34 ,3'54 60.62 33.79 57.73
tures. ments that our approach perform better va- e 31_12 gzgé 21;; ggg; éggg ggi ;g‘;’i géfé gg;g

CL : : - - ls — 91192 : : : : 1Z. : : .
* label distribution mismatch. riety of baselines. 21,5 | 5206 5944 49.03 3881 1169 1408 4277  67.14
2 —31_19 7541 83.82 7351 2711 7.21 61.60 63.51 78.59
31 —11_5 54.14 46.66 4531 64.46 8.34 49.06 38.91 52.19
PROPOSED MODEL 30 —11_5 59.34 57.83 45.09 59.45 1944 44.27 38.91 54.85
35— 1, - | 58.08 6222 4499 71.04 1944 5130 = 4226  52.84
34 — 11_5 63.36 6222 4775 47.66 14.27 43.67 39.37 62.98
, 35 — 11_5 61.99 62.22 4388 41.04 1558 50.44 34.33 59.89
regression 36 — 11_5 5497 62,22 4456 3450 14.38 45.37 37.59 60.23
3, —1,_5 | 55.84 6222 4828 20.72 1426 39.43 41.79  65.33
33 — 11_5 4893 6222 4735 5946 2207 37.93 45.19 62.39
39 —11_5 5340 62.22 4348 1896 20.17 33.31 47.12 64.46
310 — 11_5 58.65 62.22 4780 68.15 1552 47.32 30.66 61.37
311 — 115 55.69 62.22 4367 7414 13.31 48.44 35.92 56.77
Architechire 31— 115 | 7421 5111 4401 100 1469 3420  36.69  63.46
31_12 — 2 51.56 88.08 60.28 91.33 2052 33.60 78.74 92.18
e 2 RNN’s to train data before adding few target data. Avg 5299 5923 4212 46.55 13.16 40.78 43.59 66.59

2 RNN's to train data after adding few target data.

Logistic regression to handle few target training data.

Gaussian mixture to cluster data.
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FUTURE DIRECTION & ACKNOWLEDGMENT

Classification accuracy all in %. Our approach can be seen to outperform all baselines most of the
time across all experiments suggesting that it is useful when there are both label shifts as well as covari-
ate shifts in the input features.

SOURCE CODE & DATA

See references for link to some of the
datasets and the rest in the paper. The source

While we have used the same architecture for all the experiments, we aim to explore different
architectures to see if the performance will improve. Our approach can also benetit from meta learning
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code is available at https://github.com/
kehindeowoeye/ltsfw

allowing us to train the whole network end to end.
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