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PROBLEM
1. Learning to perceive smell automatically is

becoming increasingly important for a vari-
ety of olfaction applications.

2. Applications in monitoring quality of food
and drinks for healthy living.

3. Machine learning models are trained on
sensor data collected to smell a variety of
things.

4. However, models trained on one domain
rarely perform well in another similar but
related domain due to:

• Shift in the distribution of the input fea-
tures.
• label distribution mismatch.

TRAINING OBJECTIVES
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CONTRIBUTIONS
Our main contributions are:

1. We propose a weakly supervised domain
adaptation framework where we demon-
strate that by building multiple models in
a mixture of supervised and unsupervised
framework, we can generalise effectively
from one domain to another.

2. We evaluate our approach on several
datasets of beef cuts and quality collected
across different conditions and environ-
ments[1].

3. We empirically show via several experi-
ments that our approach perform better va-
riety of baselines.

RESULTS

Source-Target LR AB SVM SS[2] DNN LSTM R-DANN Ours
11−5 − 2 19.59 69.43 11.26 36.24 5.95 46.02 47.18 79.85
11 − 31−12 46.58 22.00 33.60 14.65 5.30 37.55 44.86 65.07
12 − 31−12 33.97 54.73 25.89 13.59 7.97 41.21 37.61 64.39
13 − 31−12 36.65 54.73 26.37 13.34 3.54 60.62 33.79 57.73
14 − 31−12 39.41 31.37 28.42 13.63 10.53 13.31 32.62 66.77
15 − 31−12 58.99 64.53 30.02 69.32 12.24 23.74 35.43 69.90
2− 11−5 52.06 59.44 49.03 38.81 11.69 14.08 42.77 67.14
2− 31−12 75.41 83.82 73.51 27.11 7.21 61.60 63.51 78.59
31 − 11−5 54.14 46.66 45.31 64.46 8.34 49.06 38.91 52.19
32 − 11−5 59.34 57.83 45.09 59.45 19.44 44.27 38.91 54.85
33 − 11−5 58.08 62.22 44.99 71.04 19.44 51.30 42.26 52.84
34 − 11−5 63.36 62.22 47.75 47.66 14.27 43.67 39.37 62.98
35 − 11−5 61.99 62.22 43.88 41.04 15.58 50.44 34.33 59.89
36 − 11−5 54.97 62.22 44.56 34.50 14.38 45.37 37.59 60.23
37 − 11−5 55.84 62.22 48.28 20.72 14.26 39.43 41.79 65.33
38 − 11−5 48.93 62.22 47.35 59.46 22.07 37.93 45.19 62.39
39 − 11−5 53.40 62.22 43.48 18.96 20.17 33.31 47.12 64.46
310 − 11−5 58.65 62.22 47.80 68.15 15.52 47.32 30.66 61.37
311 − 11−5 55.69 62.22 43.67 74.14 13.31 48.44 35.92 56.77
312 − 11−5 74.21 51.11 44.01 100 14.69 34.20 36.69 63.46
31−12 − 2 51.56 88.08 60.28 91.33 20.52 33.60 78.74 92.18

Avg 52.99 59.23 42.12 46.55 13.16 40.78 43.59 66.59

Classification accuracy all in %. Our approach can be seen to outperform all baselines most of the
time across all experiments suggesting that it is useful when there are both label shifts as well as covari-
ate shifts in the input features.
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FUTURE DIRECTION & ACKNOWLEDGMENT
While we have used the same architecture for all the experiments, we aim to explore different

architectures to see if the performance will improve. Our approach can also benefit from meta learning
allowing us to train the whole network end to end.

Author is grateful to Intel for their financial support.

SOURCE CODE & DATA
See references for link to some of the

datasets and the rest in the paper. The source
code is available at https://github.com/
kehindeowoeye/ltsfw
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• 2 RNN’s to train data before adding few target data.

• 2 RNN’s to train data after adding few target data.

• Logistic regression to handle few target training data.

• Gaussian mixture to cluster data.


