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Summary

We study algorithmic policies which trade off between two distinct
measures of performance. While optimal policies can be described
using traditional notions of Pareto optimality when high quality
data are readily available, we focus on understanding how to make
decisions in noisy or data-poor regimes.

Problem Setting

A central policymaker has two simultaneous objectives: to
maximize some private profit return (e.g. total user engagement)
as well as a public welfare objective (e.g. user health):

UW(π) = E[w · π(x)] and UP(π) = E[p · π(x)] .
The policymaker makes decisions about individuals, who are
specified by feature vectors x ∈ Rd , as well as profit scores p ∈ R
and change in welfare w ∈ R, if selected by the policy.
Decision policies π(x) ∈ [0, 1] corresponding to the probability
that an individual with features x is selected.

Pareto Optimal Policies
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α = 0.9Pareto optimal policies
maximize a composite objective:

π⋆
α ∈ argmax(1− α)UP(π) + αUW(π).

The parameter α determines this
trade-off, tracing the Pareto frontier.

When scores are exact,
the optimal policy is a threshold:

π⋆
α(p,w) = I((1− α)p + αw ≥ 0).
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Optimal Policies from Imperfect Scores

When scores are not exact, but are predictions f̂P(x), f̂W(x)
based on features, we consider Pareto optimality with respect to
all policies that act on the predicted scores:

Πemp = { π : (f̂P(X ), f̂W(X )) 7→ [0, 1] } .

The Pareto optimal policy for this class of policies is:

πopt
α := I((1− α) · µP + α · µW ≥ 0),

a threshold on the conditional expectations:

µP(f̂P(x), f̂W(x)) := ED[p | f̂P(x), f̂W(x)],
µW(f̂P(x), f̂W(x)) := ED[w | f̂P(x), f̂W(x)] .

Policies πopt
α for α ∈ [0, 1] trace out an empirical Pareto frontier.

▶ The empirical Pareto frontier is dominated by the exact
Pareto frontier that would arise if exact scores were known.

▶ Both the empirical and the exact Pareto frontiers exhibit
diminishing marginal returns: as a policy forgoes more profit
to increase welfare, less welfare is gained for the same
amount of profit forgone.

Plug-in Policies: When the conditional expectations above are
hard to specify, we can define the plug-in threshold policy:

πplug
α (x) = I((1− α)f̂P(x) + αf̂W(x) ≥ 0) .

Simulations demonstrate the degradation of the plug-in policy
under noise:
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(a) Uncorrelated scores with varying
additive noise
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(b) Correlated scores with fixed
additive noise

▶ Pareto optimal policies and plug-in policies coincide when
scores are well-calibrated (left above).

▶ Otherwise, the plug-in policy is not guaranteed to be the
optimal policy based on the scores. Under certain settings,
we can correct for this using a debiasing procedure on the
predicted scores.

Empirical Results
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Youtube Engagement vs Profit:
▶ 39,817 YouTube videos; policy
π decides which videos to show.

▶ Measure user engagement (p)
via number of views of each video.

▶ Measure quality (w)
by predicted scores (empirical)
or hand-annotated labels
(optimal-in-hindsight) of whether
video is a conspiracy video [1].

Using the predicted scores we trace the predicted Pareto frontier;
using binary ground truth values we trace the empirical frontier:
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(a) Predicted Pareto Curve
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(b) Empirical Pareto Curve

At the maximum-engagement policy, a 1.0% increase in average
video quality is achieved with a 0.1% loss in total engagement.

Conclusion
Our framework elucidates trade-offs inherent to optimizing dual
objectives with machine learning predictions. Diminishing
marginal returns indicate that often a small amount of profit can
be sacrificed for large gains in welfare.
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