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Introduction

o One of the most common techniques used by marine biologists
to determine presence/absence of marine mammals is Passive

Acoustic Monitoring (PAM)

o PAM haslead to large quantities of data for which manual

analysis is expensive and time consuming

o Most traditional detection algorithms developed for PAM do

not generalize well to new sources of noise

o Deep learning provides an opportunity for more generalizable

systems | 2]

Acoustic Recordings

Neural Network Architecture and Training Details

o Acoustic recordings were collected by JASCO Applied Sciences
using Autonomous Multichannel Acoustic Recorders (AMARS)

o [hedeviceswere deployed off the coast of Atlantic Canada

during the fall/summer of 2015 and 2016 surrounding an area

of biological interest known as the Scotian Shelf
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o Iherecordings were sampled at both 8kHz and 250k

o [heacousticrecordings were analyzed by marine biologists to

Z 1N
order to capture the low frequency vocalizations of baleen
whales and high frequency vocalizations of toothed whales

produce annotations in the form of bounding boxes around

marine mammal vocalizations

o We focus on identifying the vocalizations of three species of

endangered baleen whales: blue, fin, and sel whales

o [heunderlying neural architecture of the detection system is
Mask R-CNN [1]
o backbone: ResNet-50 + feature pyramid network (FPN)
o 1000 region proposals per instance
o RolAlign for resizing the features in each region of interest

o [henetwork s trained to detect bounding boxes corresponding
to marine mammals vocalizations within spectrograms five
seconds in length
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o Stochastic Gradient Descent (SGD) with momentum=0.9 was
used as an optimization routine

« [Training was carried out over four NVIDIA P100 GPUs, each
with 16GB of memory

o Othertraining parameters: batch size=4 (one instance per
GPU), initial learning rate=0.003 that decayed by a factor of 10
after learning plateaued

loss loss_classifier loss_box_reg loss_rpn_box_reg loss_objectness
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Experimental Results

Frequency (Hz)

e
-l..;.'_-l-.l::.'ﬂ'.ll .| *..T
Sy

Time (s)

Species Label AP@.5 mAP@[.5:.95]  AR@.5 mAR®I.5:.95]

Overall - 82.1 41.8 91.9 54.8

Blue whale  BW 85.7 52.8 96.2 /0.9

Fin whale FW /5.3 30.8 89.9 40.0

Sei whale SW 85.4 41.9 89.7 494
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