Zero-Shot Transfer Learning to Enhance Communication for Minimally Verbal Individuals with Autism using Naturalistic Data

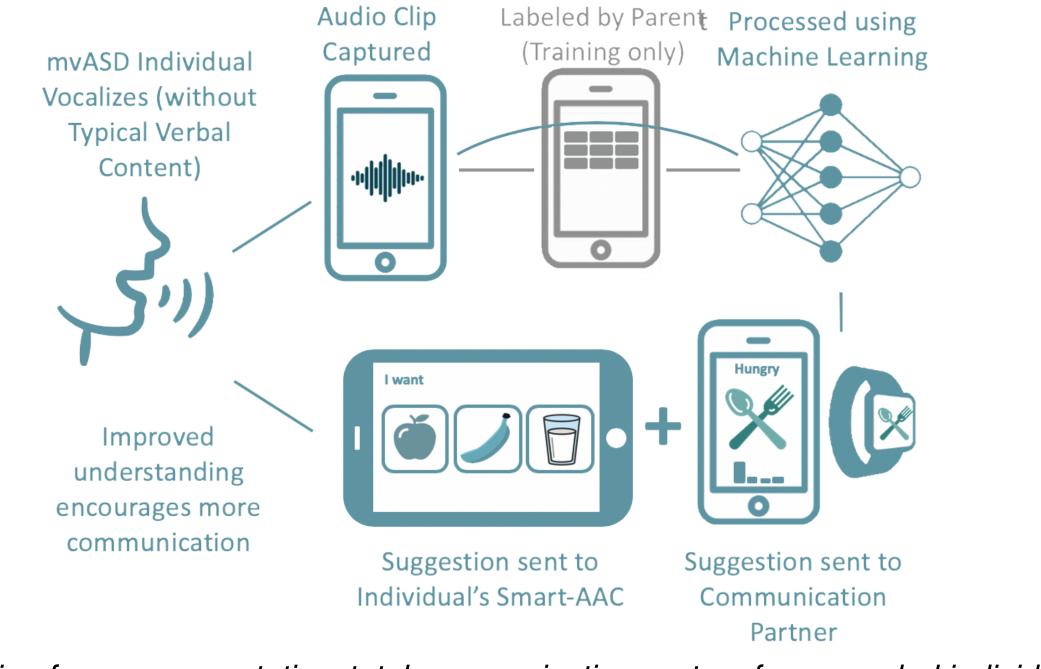
Jaya Narain* & Kristina Johnson*, Rosalind Picard, Pattie Maes (*Equal contribution) MIT Media Lab, {jnarain, ktj, picard, pattie}@media.mit.edu

Background & Motivation

- Current augmentative communication systems have limited success in conveying affect and communicative intent of individuals with minimally verbal ASD (mvASD)
- Vocalizations (without typical verbal content) are affect and content rich and accessible in any environment
- Our system uses primary caregivers' unique knowledge of an individual's vocal sounds to label and train machine learning models to build holistic communication technology
- Concept was developed through interviews (n=5) and surveys (n=18) with ASD individuals and their families

Data Collection

- Spontaneous vocalizations were collected "in the wild" during an eight-month case study (n=1)
 - Created *mv01*, the **first labeled dataset of vocalizations without typical verbal content** from an individual with nonverbal autism (i.e., has no spoken speech)
 - Recorded 13 hours of single-channel audio at 16 bits per second using wireless, wearable microphone
 - Vocalizations were self-motivated communicative and affective exchanges between the nonverbal 8-year-old and his parents



Vision for an augmentative, total communication system for nonverbal individuals using naturalistic vocalizations

- Created custom app for primary caregivers to label sounds in real time
 - Collected more than 300 caregiver-labeled events
- Emphasized unobtrusive, affordable data collection methods
 - Protocol to be deployed with a specialized, geographically distributed population
- To protect privacy, participant's family could view and delete recordings before sharing them with the research team

Small, wearable recorder in chest pocket

Custom app for "live labeling" by parents

 Θ \checkmark \blacksquare

PAIN

9:54

ECHOS

ADD NOTES

PRESET

Focus Mode

PRESET

Logged DYSREGULATION -1s +1s El

Why Zero-Shot Transfer Learning?

 Examine how models trained with a large,

Model Training via AudioSet Database

 dex
 Laugh
 Neg. Aff
 Self-Talk

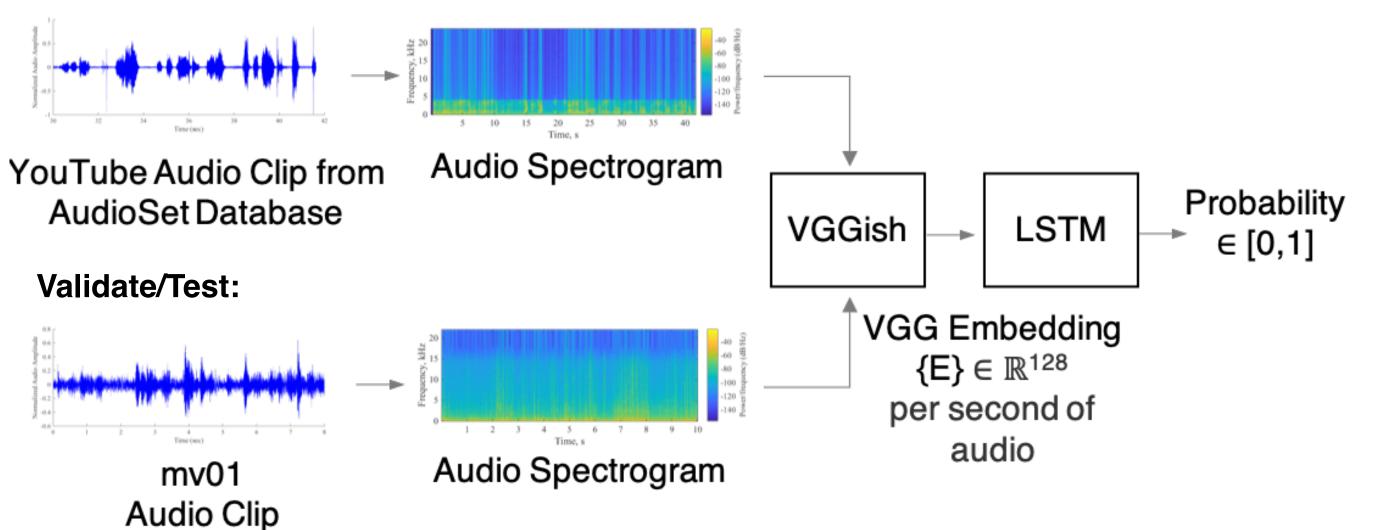
 0
 Speech
 Positive

 1
 Male speech
 Negative

 2
 Female speech
 Female speech

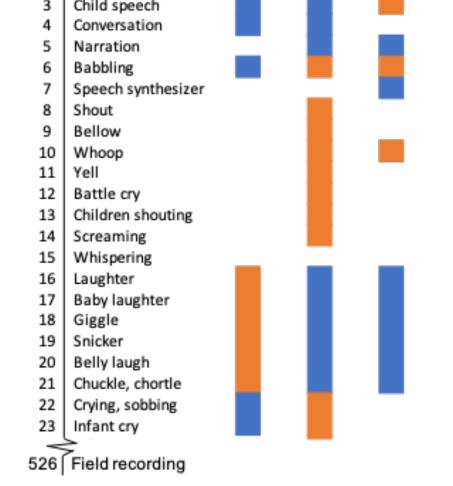
Methods

Data Processing Pipeline



- generic audio dataset perform with nontypical vocalization data
- Inform how to augment limited training data
- Improve model performance for mvASD individuals while minimizing labeling burden by caregivers

- guitar music male speech thunderstorm rain speech music female singing
- 2 million 10-sec YouTube clips
- Human-labeled using 527 classes
- We examined three meta-classes of vocalizations:
 - Self-talk
 - Negative affect
 - Laughter

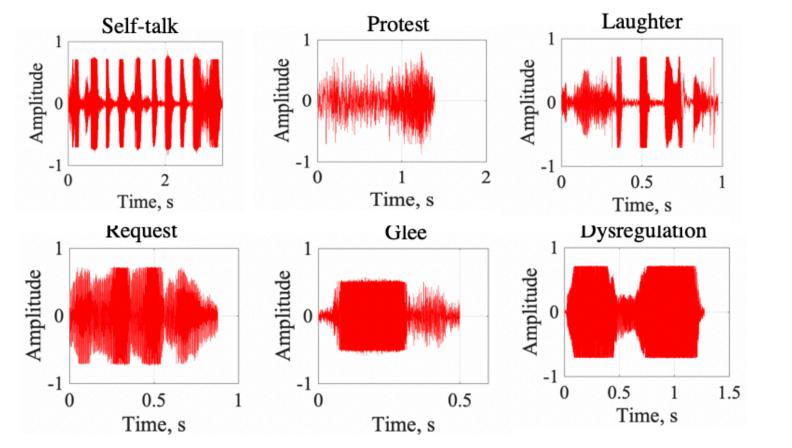


- Sub-classes of AudioSet were selected as pos/neg training examples (balanced sets)
 - Positive classes sounded similar to the child in *mv01*
 - Negative classes might confuse the model (e.g., close to *mv01* vocalizations or common in dataset)
- Validation data: first 3 days of data collection
- Test data: last 2 days of data collection (held out)
- Used overlapping 9.6s segments of *mv01* with a window step size of 0.96s
- Probability thresholds were selected based on the model's performance on *mv01_validation*
- Ground truth was determined via a 5-minute test segment labeled per second by the caregiver for each category
- Test segments were selected using the caregiver's live labels to identify a segment with many instances of that meta-class

Conclusions & Future Work

Self-Talk		Actual		Neg. Affect		Actual		Laughter		Actual	
		Yes	No			Yes	No			Yes	No
Pred	Yes	0.33	0.67	Pred	Yes	0.46	0.54	Pred	Yes	0.18	0.82
	No	0.41	0.59		No	0.27	0.73		No	0.06	0.94
Accuracy: 0.511				Accuracy: 0.690				Accuracy: 0.703			

Results



Example, high-quality audio waveforms for 6 caregiver-labeled classes.

0.75

Near chance self-talk accuracy may reflect lack of appropriate mvASD training data

- There is promise in transfer learning approaches for classes like laughter (70% accuracy) and negative affect (69% accuracy)
 - Errors in model accuracy may reflect low availability of related audio events in the AudioSet dataset, particularly for self-talk
 - Low true positive rate may be a consequence of the highly varied and noisy environment of real-world data
- Dataset is the first of its kind, and an important step in developing algorithms that can generalize to sparse, naturalistic data
 - As more data is collected, direct transfer learning between the VGGish embedding spaces of AudioSet and mv01 may improve model performance
 - The live labels were not precisely aligned in the time domain, and future work will include developing methods for signal-label alignment
 - The *mv01* dataset is small and sparsely labeled with unique vocalizations, and may be well suited for semi-supervised algorithms in the future

