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Abstract

Although real-world decisions typically aim to balance many competing objectives,
algorithmic decisions are often evaluated with a single objective function. This
paper studies algorithmic policies which attempt to optimally trade off between two
distinct measures of performance; i.e. profit and social utility, or user engagement
and user health. While optimal policies can be described using traditional notions
of Pareto optimality when high quality data are readily available, we focus on
understanding how decisions should be made in noisy or data-poor regimes. We
formalize this trade off and present empirical results on a real world dataset for
content recommendation. These experiments underscore the applicability of our
analyses and shed light on the nature of inherent trade offs in the application of
machine learning methods to human-sensitive decisions.

1 Introduction

From financial loans [4] and humanitarian aid [5], to medical diagnosis [13] and criminal justice [3],
consequential decisions in society increasingly rely on machine learning. In most cases, the machine
learning algorithms used in these contexts are trained to optimize a single metric of performance.
However, the decisions made by algorithms can have adverse side effects. Increasingly, the institutions
which rely upon decision making algorithms are facing external and internal pressure to balance
traditional private objectives (such as profit and user engagement) with public objectives that account
for the well-being of those that they serve. In other words, most real-world decisions exist in a
multi-objective setting, that requires the balance of multiple incentives and outcomes.

This paper develops a methodology for optimizing multi-objective decisions. Building on the tra-
ditional notion of Pareto optimality, which provides a concise characterization of optimal policies
under complete information, we focus on understanding how to balance multiple objectives when
those objectives are measured noisily or not directly observed. We believe this regime of imper-
fect information is far more common in real-world decisions, where one cannot easily measure
the social consequences of an algorithmic decision. To show how the multi-objective framework
can be used in practice, we present results using data from roughly 40,000 videos promoted by
YouTube’s recommendation algorithm. This illustrates the empirical trade-off between maximizing
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Figure 1: A Pareto curve (left) and the decision boundaries (right) induced by three different tradeoff
parameters α. Colored points indicate selected individuals.

user engagement and promoting high-quality videos. We show that multi-objective optimization
could produce substantial increases in average video quality at the expense of almost negligible
reductions in user engagement.

Related Work Many notions of ‘fairness’ in machine learning have been proposed and studied
[1, 2, 9]. The inherent trade-offs between fairness criteria are well-known [6, 19]. Previous works
have also studied the tension between group-specific objectives and accuracy [18, 31], as well
as highlighted the domain-specific nature of these concerns [12, 27]. An emerging line of work
is concerned with the long-term impact of algorithmic decisions on societal welfare and fairness
[10, 14, 26]. Previous investigation into the delayed impact of a decision policy on the wellbeing
of different subpopulations [23] motivates us to study the direct optimization of welfare and profit,
jointly. Complementary to previous work on multiobjective optimization [7, 8, 20] and learning
Pareto frontiers [7, 17, 25], we are concerned with addressing uncertainty in the estimation of relevant
objectives. We consider post-selection effects by focusing on a single round of algorithmic decisions,
while some related work addresses the sequential nature of decisions on a longer term [22, 29]. For
further exposition of multi-objective optimization in machine learning more broadly, we refer the
reader to [15, 16].

2 Pareto-optimal policies

We consider a setting in which a policymaker has two simultaneous objectives: to maximize some
private return (such as revenue or user engagement), which we generically refer to as profit; and to
improve a public objective (such as social welfare or user health), which we refer to as welfare. The
policymaker makes decisions about individuals, who are specified by feature vectors x ∈ Rd.

Decision policies are functions that output a randomized decision π(x) ∈ [0, 1] corresponding to the
probability that an individual with features x is selected. We further associate to each individual a
value p representing the expected profit to be garnered from approving an individual and w encoding
the change in welfare. The profit and welfare objectives are thus:

UW(π) = E[w · π(x)] and UP(π) = E[p · π(x)] . (1)

Given two objectives, one can no longer define a unique optimal policy π. Instead, we focus on
policies π which are Pareto-optimal [28], in the sense that they are not strictly dominated by any
alternative policy, i.e. there is no π′ such that both profit and welfare objectives are strictly better
under π′. Under general conditions, it is equivalent to consider policies that maximize a weighted
combination of both objectives. We can thus parametrize the Pareto-optimal policies by α ∈ [0, 1]:

π?α ∈ argmax Uα(π), Uα(π) := (1− α)UP(π) + αUW(π).

We defer a formal statement of this fact to the Appendix, in Proposition A.1.

Exact scores We first consider an idealized setting, where the welfare and profit contributions
w and p can be directly determined from the features x via exact score functions, fW(x) = w,
fP(x) = p. These exact score functions can be thought of as sufficient statistics for the decision:
the expected weighted contribution from accepted individuals is described by ((1 − α)p + αw).
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Therefore, one can show that the optimal policy is given simply by thresholding this composite:

π?α(p, w) = I((1− α)p+ αw ≥ 0). (2)

Though they are all Pareto-optimal, the policies π?α induce different trade-offs between the two
objectives. The parameter α determines this trade-off, tracing the Pareto frontier.

Pexact := {(UP(π?α),UW(π?α)) : α ∈ [0, 1]}

Figure 1 plots an example of this curve (leftmost panel) and the corresponding decision rules for three
points along it. We note the concave shape of this curve, a manifestation of diminishing marginal
returns: as a decision policy forgoes profit to increase total welfare, less and less welfare is gained
for the same amount of profit forgone.

Inexact scores In real applications, we typically do not know the profit score p or welfare score
w — or even the score functions fP and fW — a priori. Instead, we might estimate score functions
from data in the hope that these models can provide good predictions on future examples. Given
access to finite samples {(xi, wi)}nw

i=1 and {(xj , pj)}
np

j=1 drawn from an underlying distribution, we
can estimate the score functions via empirical risk minimization, where we set

f̂W ∈ argmin
f

1

nW

nW∑
i=1

`pred(f(xi), wi), f̂P ∈ argmin
f

1

nP

nP∑
i=1

`pred(f(xj), pj) .

Then we can define a selection rule based on α-defined plug-in threshold policies via

πplug
α (x) = I((1− α)f̂P(x) + αf̂W(x) ≥ 0) . (3)

This policy is optimal when predicted scores exactly recover the truth (recovering the exact case (2)),
and furthermore we can bound the sub-optimality gap when they do not (Appendix A.2). However,
when the scores are imperfect, the plug-in policy may not be Pareto optimal.

Pareto-optimality for learned scores We now describe Pareto-optimal policies over Πemp, the
class of all policies that act on the predicted scores. First, we define the following conditional
expectations over the distribution D of (x, p, w):

µP(f̂P(x), f̂W(x)) := ED[p | f̂P(x), f̂W(x)], µW(f̂P(x), f̂W(x)) := ED[w | f̂P(x), f̂W(x)] .

Intuitively, these values represent our best guesses of p and w, given the predicted scores. We define
πopt
α as the threshold policy on the composite (1− α) · µP + α · µW.

Theorem 2.1 (Pareto Frontier in inexact knowledge case). The policies πopt
α are Pareto-optimal over

the class Πemp. The associated empirical frontier Pemp is dominated by the exact frontier Pexact.

Thus an optimal empirical-score based policy can also be realized as a threshold policy (this time of
the conditional expectations), and it obeys the same diminishing-returns phenomenon as in the exact
score case. We present a proof of this result in Appendix A.3.

We emphasize that πopt
α requires computing conditional expectations over the distribution D, and

therefore will differ from the plug in policy defined in (3). Nevertheless, πopt and πplug coincide as
long as the predicted score functions are well-calibrated, in the sense that E[p | f̂P(x), f̂W(x)] =

f̂P(x) and E[w | f̂P(x), f̂W(x)] = f̂W(x). One example of f̂P(x) that achieves this is the conditional
expectation of p given x, i.e., f̂P(x) = E[p | x]. Calibration can be achieved by empirical risk
minimization under typical conditions [24].

3 Empirical investigation: balancing user engagement and health

We now illustrate how the multi-objective framework can be used to balance the desire to promote
high quality content with the need for profit. Specifically, we work with a dataset that contains
measures of content quality and content engagement for 39,817 YouTube videos. These data were
constructed as part of an independent effort to automatically ascertain the quality and truthfulness of
YouTube videos [11].
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Figure 2: Distribution of
YouTube data predicted quality
scores across unlabled videos
(grey), and hand labeled conspir-
acy (red) and non-conspiracy
(purple) videos.
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Figure 3: (a) Estimated Pareto curve for YouTube predictions.
Stars indicate specific α trade offs. (b) Estimated Pareto curve
for YouTube predictions on labeled data subset (thick blue line).
Optimal-in-hindsight curve (dashed grey line) and performance
of predictions on label set (black line).

The measure of quality f̂W we use is a function of the ‘conspiracy score’ developed by [11], which
indicates the probability that the video promotes a debunked conspiracy theory. From this predicted
score sconspiracy we derive a predicted ‘quality score’ as (1−sconspiracy) ∈ [0, 1]. Defining an allowable
quality threshold as the median score of all videos (= 0.95), we instantiate f̂W = (1−sconspiracy)−0.95.
It is worth noting that no notions of engagement (e.g. view count, comment count) were included as
training data to learn sconspiracy.

We instantiate the engagement (profit) score fP[i] for video i as log((1 + # views[i])/100, 000),
where the number of views is observed directly. Dividing by a large constant represents that videos
with low view counts may not be profitable due to storage and hosting costs, i.e. videos with view
counts below 100, 000 (roughly 32% of the videos in the validation set) do not break a profit margin.
The resulting distribution over fP and f̂W is shown in Figure 2 (grey dots), where the thresholds in
each score are denoted with dotted lines.

Using these scores and predictions, we estimate a Pareto frontier using the optimal policies πplug
α for

learned scores from Eq. (3). The resulting estimated Pareto curve is shown in Figure 3a.

The curve is concave, demonstrating the phenomenon of diminishing returns in the trade off between
total user engagement and average video quality. While there is always some quality to gain by
sacrificing some total engagement, these relative gains are greatest when the starting point is close to
an engagement-maximizing policy. Specifically, at the maximum-engagement end of the spectrum
(lower right star), we can gain a 1.0% increase in average video quality for a 0.1% loss in total
engagement. However, for a policy that already with trade off rate α = 0.8 (upper left star), to obtain
an increase of 0.9% in welfare, a larger loss of 6.5% in user engagement is required.

Next, we assess the validity of this estimated Pareto curve using the small set of hand-labeled training
set instances from which sconspiracy was learned. This set consists of 541 video instances which are
hand-labeled as either conspiracy (251) or non-conspiracy (290), as well as their view counts and
predictions. As shown in Figure 2, these validation points are drawn from a different distribution, and
thus tend to lie toward the extremes of the quality measure. This assessment is likeley optimistic due
to the fact that the scores predictor functions were trained on this same data; nonetheless, this is an
important check to perform on the estimated Pareto frontier.

In Figure 3b we plot the optimal-in-hindsight Pareto frontier (dashed grey line) if we had known the
labels a priori and applied thresholds according to (2). We also plot the performance of our estimated
policy πplug

α on the labeled instances (black line). The stars on each curve correspond to decision
thresholds with α = 0 and α = 0.8, and illustrate the calibration of the curves.

Relating back to Theorem 2.1, we see that performance of the learned scores (black line) is dominated
by that of the optimal classifier, as is the predicted Pareto curve (thick blue line). We note that the
predicted Pareto curve under-predicts the actual performance; in general it is possible for the opposite
to be true. Importantly, we observe that the curves representing the predicted and actual performance
show similar qualitative trade offs.
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4 Conclusion

We have presented a methodology for developing welfare-aware policies that jointly optimize private
institutional objectives with public objectives involving social welfare. Taking care to consider data-
poor regimes, we develop theory around the optimality of using learned predictors to make decisions.
Our experiments corroborate our theoretical result, showing that thresholding on predicted scores can
approach a Pareto optimal policy. Ongoing and future work is focused on extending this framework
to approach more intricate tradeoffs, such as the cost-benefit trade-off between spending excess profit
to collect more data versus traversing a sub-optimal Pareto frontier. Altogether, this work provides
encouraging insight into how to address the trade-offs inherent to designing machine-learning based
welfare aware policies while emphasizing data collection and measurement as a crucial component.
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A Proofs for General Characterization of Pareto Curves

A.1 Pareto Policies Optimize Weighted Combination of Utilities

Proposition A.1 (Pareto optimal policies optimize a composite objective). If and only if a policy
π? ∈ Π is Pareto optimal, there exists an α ∈ [0, 1] for which

π? ∈ argmax
π∈Π

Uα(π)

Uα(π) := (1− α)UP(π) + αUW(π).

Proof. First, we prove that if π? ∈ argmaxπ Uα(π) := (1− α)UP(π) + αUW(π), then π? is Pareto
optimal. Suppose that there exists an α for which π? ∈ argmaxπ Uα(π). If α ∈ {0, 1}, then
π? maximizes either UW(·) or UP(·), and is therefore Pareto optimal by definition. Otherwise, if
α ∈ (0, 1), suppose for the sake of contradiction that π? is not Pareto optimal. Then exists a policy π
for which either UW(π?) ≤ UW(π) and UP(π?) ≤ UP(π), and that one of these inequalities is strict.
We can then check that Uα(π?) < Uα(π), contradiction that π? ∈ argmaxπ Uα(π).

To show the other direction, suppose that π? is Pareto optimal. If π? maximizes either profit or
welfare, then π? ∈ argmaxπ Uα for either α = 1 or α = 0. Otherwise, let W = UW(π?). Then, by
Pareto optimality,

π? ∈ argmax{UP(π) : UW(π) ≥ UW(π?), π ∈ Π}

= argmax
π∈Π

(
UP(π) + min

t≥0
t(UW(π)− UW(π?)

)
= argmax

π∈Π
min
t≥0

(UP(π) + t (UW(π)− UW(π?))) .

The map UP(π) and UW(π) are both linear functions in π. Hence, if Π is a a convex, and compact in
a topology in which π 7→ UP(π) and UW(π) are continuous, Sion’s minimax theorem [21] ensures
that strong duality holds, which means that we can switch order of the minimization over t and
maximization over π. Thus, for some t ≥ 0,

π? ∈ argmax
π

(UP(π) + t · UW(π)− t · UW(π?)) = argmax
π

(UP(π) + t · UW(π))

= argmax
π

(
1

1 + t
U(π) +

t

1 + t
UW(π)

)
= argmax

π

(
U1/(1+t)(π)

)
,

as needed. The convexity of Π means that Π is closed under the randomized combination of policies.
In the simplest case, compactness is achieved when the space of features is finite (e.g. features x can
only take a values in a discrete, finite subset of Rd).

A.2 Utilitity Loss induced by Score Function Suboptimality

Proposition A.2 (Sub-optimality bound). The gap in α-utility from applying policy (3) versus
applying the optimal policy (2) is bounded as

Uα(π?α)− Uα(πplug
α ) ≤ (1− α)E[|f̂P(x)− fP(x)|] + αE[|f̂W(x)− fW(x)|]. (4)

In statistical learning settings without model misspecification, |f̂P(x)− fP(x)| typically decreases at
the rate 1√

nP
[30]. In practice, we can estimate E[|f̂P(x)− fP(x)|] with the empirical absolute error

on a validation set (and similarly for w), and thus estimate the upper bound empirically.

Proof of Proposition A.2. We compute

Uα(πplug
α )− Uα(πα) = E[((1− α)p+ αw)

(
πplug
α − πα

)
]

Define the functions Y (x) = (1− α)fP(x) + αfW(x), and let E(x) = (1− α)(f̂P(x)− fP(x)) +

α(f̂W(x)− fW(x)). Then, πplug
α (x)− πα = I(Y (x) + E(x) ≥ 0)− I(Y (x) ≥ 0). We see that this

difference is at most 1 in magnitude, and is 0 unless possibly if |Y (x)| ≤ |E(x)|. Hence,

|Y (x)| · |πplug
α (x)− πα(x)| ≤ |E(x)|
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Therefore

|Uα(πplug
α )− Uα(πα)| = |E[Y (x)(πplug

α (x)− πα(x)]|
≤ E[|Y (x)| · |πplug

α (x)− πα(x)|]

≤ E[|E(x)|] = E[|(1− α)(f̂P(x)− fP(x)) + α(f̂W(x)− fW(x))|]

≤ (1− α)E[|f̂P(x)− fP(x)|] + αE[|f̂W(x)− fW(x))|].

A.3 Proof of Theorem 2.1

We first show that

πopt
α ∈ argmax

π∈Πemp

E
[
Uα(π(f̂W, f̂P))

]
.

We have that

Uα(π) = E[((1− α)p+ αw))π(f̂P, f̂W)]

= E[
(

(1− α)E[p | f̂P, f̂W] + αE[w | f̂P, f̂W]
)
· π(f̂P, f̂W)]

:= E[
(

(1− α)µP(f̂P, f̂W) + αµW(f̂P, f̂W)
)
· π(f̂P, f̂W)]

≤ E
[
max

{
(1− α)µP((f̂P, f̂W) + αµW(f̂P, f̂W), 0

}]
= Uα(πopt

α ).

Hence, we obtain the Pareto optimality of πopt
α by Proposition A.1.

Moreover, empirical policies are dominated by those induced by the true score functions because, as
established, the Pareto optimal policies based on the true score functions are in fact Pareto optimal
over all policies that are induced by a function of the features x.
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