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1 Introduction

Much of machine learning research, and especially machine learning fairness, focuses on optimizing
a model for a single use case [1, 4]. However, the reality of machine learning applications is far more
chaotic. It is common for models to be used on multiple tasks, frequently different in a myriad of ways
from the dataset that they were trained on, often coming at significant cost [27]. This is especially
concerning for machine learning fairness – we want our models to obey strict fairness properties,
but we may have far less data on how the models will actually be used. How do we understand our
fairness metrics in these more complex environments?

In traditional machine learning, domain adaptation techniques are used when the distribution of
training and validation data does not match the target distribution that the model will ultimately be
tested against. Therefore, in this paper we ask: if the model is trained to be “fair” on one dataset, will
it be “fair” over a different distribution of data? Instead of starting again with this new dataset, can we
use the knowledge gained during the original debiasing to more effectively debias in the new space?

It turns out that this framing covers many important cases for machine learning fairness. We will use,
as a running example, the task of income prediction, where some decisions will be made based on the
person’s predicted income and we want the model to perform “fairly” over a sensitive attribute such
as gender. We primarily follow the equality of opportunity [17] perspective where we are concerned
with one group (broken down by gender or race) having worse accuracy than another. In this setting,
there are a myriad of fairness issues that arise that we find domain adaptation can shed light on:

Lacking sensitive features for training: There may be few examples where we know the sensitive
attribute. In these cases, a proxy of the sensitive attribute have been used [16], or researchers need
very sample-efficient techniques [1, 4]. For distant proxies, researchers have asked how well fairness
transfers across attributes [20]. Here the sensitive attribute differs in the source and target domains.

Data is not representative of application: Dataset augmentation, models offered as an API, or
models used in multiple unanticipated settings, are all increasingly common design patterns. Even
for machine learning fairness, researchers often believe limited training data is a primary source
of fairness issues [7] and will employ dataset augmentation techniques to try to improve fairness
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[11]. How can we best make use of auxiliary data during training and evaluation when it differs in
distribution from the real application?

Multiple tasks: In some cases having accurate labels for model training is difficult and instead proxy
tasks with more labeled data are used to train the model, e.g., using pre-trained image or text models
or using income brackets as a proxy for defaulting on a loan. Again we ask: when does satisfying a
fairness property on the original task help satisfy that same property on the new task?

Each of these cases are common throughout machine learning but present challenges for fairness. In
this work, we explore mapping domain adaptation principles to machine learning fairness.

2 Problem Formulation

We begin with some notation to make the problem formulation precise. Building on our running
example we have two domains: a source domain Z ⇠ DS , which is a feature distribution influenced
by sensitive attribute AS 2 AS (e.g., PrZ⇠DS [Z|AS = male] 6= PrZ⇠DS [Z|AS = female]), as
well as a target domain DT influenced by sensitive attribute AT 2 AT (e.g., PrZ⇠DT [Z|AT =
black] 6= PrZ⇠DT [Z|AT = white]). In order for this to be a domain adaptation problem, we assume
PrZ⇠DS [Z|AS ] 6= PrZ⇠DT [Z|AT ]. Note, this can be true even if DS = DT but the distributions
conditioned on AS and AT differ. We focus on binary classification tasks with label Y 2 Y , e.g.
income classification is shared over both domains. For this task we can create a classifier by finding a
hypothesis g : D ! Y from a hypothesis space H.
Assume that we can learn a “fair” classifier g for the source domain and task. If we use a small amount
of data from the target domain, will the fairness from the source sensitive attribute AS transfer to
the target domain and sensitive attribute AT ? We define the notion of a “fairness” distance – how far
away the classifier is from perfectly fair – in a given domain S as �FairS . Within this we consider a
definition of equality of opportunity [17]. A classifier is said to be fair under equality of opportunity
if the false positive rates (FPR) over sensitive attributes are equal. In other words if we have a binary
sensitive attribute A, then equality of opportunity requires that Pr(Ŷ = 1|A = 0, Y = 0) = Pr(Ŷ =
1|A = 1, Y = 0), where Ŷ gives the outcome of classifier g. Thus, how far away a classifier g is
from equal opportunity (or the fairness distance of equal opportunity) can be defined as

�EOpS
(g) ,

����EZ0
0⇠D

S0
0

[g(Z0
0 )]� EZ0

1⇠D
S0
1

[g(Z0
1 )]

���� ,

where DSl
↵
= PZ⇠DS [Z|A = ↵, Y = l]. In our running example �EOpS

(g), where AS is gender, is
the difference between the likelihood that a low-income man is predicted to be high-income and the
likelihood that a low-income woman is predicted to be high-income. A symmetric definition and set
of analysis can be made for false negative rate (FNR).

Given a classifier g that has a fairness guarantee in the source domain, the fairness distance in the target
domain should be bounded by the fairness distance in the source domain �FairT (g)  �FairS (g)+✏.
The key question we hope to answer is: what is ✏?

3 Bounds on Fairness in the Target Domain

To expand the key question we need to start with some definitions. Given a hypothesis space H

and a true labeling function f(Z) : D ! Y , we can define the error of a hypothesis g 2 H as
✏S(g, f) = EZ⇠DS [|f(Z)� g(Z)|], the expectation of disagreement between the hypothesis g and
the true label f . We can then define the ideal joint hypothesis that minimizes the combined error over
both the source and target domains as g⇤ = argming2H

✏S(g, f) + ✏T (g, f).

Following Ben-David et al. [3] we define the H-divergence between probability distributions as

dH(D,D0) = 2 sup
g2H

|PrD[I(g)]� PrD0 [I(g)]| , (1)

where I(g) is the set for which g 2 H is the characteristic function (Z 2 I(g) , g(Z) = 1). We
can compute an approximation d̂H(D,D0) by finding a hypothesis h that finds the largest difference
between the samples from D and D

0 [2]. This divergence can be used to look at the differences in
distributions, which is important when moving from a source domain to a target domain.
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Additionally, we defined the symmetric difference hypothesis space H�H as the set of hypotheses
g 2 H�H () g(Z) = h(Z)� h0(Z) for some h, h0

2 H, (2)

where � is the XOR function. The symmetric difference hypothesis space is used to find disagree-
ments between a potential classifier g and a true labeling function f .
Theorem 1. Let H be a hypothesis space of VC dimension d. If US0

0
, US0

1
, UT 1

0
, UT 0

1
are samples

of size m0, each drawn from DS0
0
, DS0

1
, DT 0

0
, and DT 0

1
respectively, then for any � 2 (0, 1), with

probability at least 1 � � (over the choice of samples), for every g 2 H (where H is a symmetric
hypothesis space) the distance from equal opportunity in the target space is bounded by

�EOpT
(g)  �EOpS

(g) +
1
2
d̂H�H(UT0

0
,US0

0
) +

1
2
d̂H�H(UT0

1
,US0

1
)

+ 8

s
2d log(2m0) + log( 2� )

m0
+ �0

0 + �0
1,

where �l
↵ = ✏Sl

↵
(g⇤, f) + ✏T l

↵
(g⇤, f).

Using both the definition of H-divergence and symmetric difference hypothesis space, Theorem 1
provides a VC-dimension bound on the equal opportunity distance in the target domain given the
equal opportunity distance in the source domain.

This theorem provides insights on when domain adaptation for fairness can be used. Firstly the d̂
terms in the bound suggest that 1) the source and target distributions of negatively labeled items
that have a sensitive attribute label of 0 should be close, and 2) the source and target distributions of
the negatively labeled items that have a sensitive attribute label of 1 should be close. In traditional
domain adaptation, ignoring fairness, the entire domains should be close, which means that if there
are few minority data-points, then the distance of the minority spaces will be ignored. The fairness
bound instead puts equal emphasis on both the majority and minority.

Secondly, the � terms become small when the hypothesis space contains a function g⇤ that has low
error on both the source and target space on the two negative segments in each domain. With equal
opportunity the function g⇤ only needs to have low error on the negative space for both the majority
and minority. Therefore, we can use the trivial function g⇤(Z) = 0 and the � terms go to 0.

4 Modeling to Transfer Fairness

With this theoretical understanding, how should we change our training? As motivated previously,
we consider the case where we have a small amount of labelled data (both labels Y and sensitive
attributes A) in the target domain and a large amount of labelled data in the source domain.

As shown in the previous section, equality of opportunity will transfer if the distance between
the respective distributions of source and target are close together. Ganin et al. [13] proved that
traditional domain adaptation can be framed as minimizing the distance between source and target
with adversarial training. [23, 12, 4, 21] similarly have applied adversarial training to achieve fairness
goals, and Madras et al. [24] proved that equality of odds can be optimized with adversarial training
similar to domain adaptation. We build on this intuition to design a learning objective for transferring
equality of opportunity to a target domain.
Recently, Zhang et al. [31] used adversarial training on a one dimensional representation of the data
(effectively the model’s prediction). From this perspective, we can use a wide variety of losses over
predictions to replace adversarial losses, such as [30, 5] minimizing the correlation between group
and the one dimensional representation of the data. Like previous work, we find these approaches to
be more stable and still effective in comparison to adversarial training, despite not being provably
optimal. In our experiments we use a MMD loss [15, 22, 6] over predictions:

min

2

4
X

Z2DS[DT

LY (f(Z), g(Z)) +
X

(A,Z0)⇠DS0

�FairLMMD

�
a(h(Z0)), A

�

+
X

(d,Z0)⇠(DS0[DT0)

�DALMMD

�
d(h(Z0)), d

�
3

75 , (3)
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where �FairLMMD

�
a(h(Z0)), A

�
is the MMD regularization over the sensitive attributes in the source

domain, and �DALMMD

�
d(h(Z0)), d

�
is the MMD regularization over source/target membership.

Care must be taken when performing domain adaptation with regards to fairness. Either multiple
transfer heads should be included in the loss for all necessary quadrants, or balanced data – equally
representing all necessary subgroups – should be used as in [24] and Eq. 3.

5 Experiments

We explore how and when our proposed modeling approach in Section 4 facilitates the transfer
of fairness from the source to the target domain on two real-world datasets (The UCI Adult2 and
ProPublica’s COMPAS recidivism data3). Note, we use these datasets for understanding our theory
and model, and not as a comment on when or if the proposed tasks are appropriate, as in [1].
Experiment Setup For both datasets, cross-validation is used to choose the hyper-parameters.
Comparable baseline accuracy (around 84% for Dataset 1 and 80% for Dataset 2, see appendix D for
more details) is achieved with 64 embedding dimension for categorical features, single hidden layer
with 256 shared hidden units, 512 batch size, 0.1 learning rate with Adagrad optimizer, and 10, 000
epochs for training. We perform 30 runs for each set of experiments and average over the results.
Effect of Target Sample Size We consider how the amount of data from the target domain affects
our ability to improve equal opportunity there, as sample efficiency is a core challenge.

Experiment setting: First, we vary the number of samples for each sensitive group in the target domain
({50, 100, 500, 1000}). We examine the efficacy of the four approaches depending on the amount
of data available for debiasing in the target domain. Second, this analysis is performed for both
transferring from race (source) to gender (target), as well as from gender (source) to race (target).

Results: Table 1 summarizes the results. Applying the fairness and transfer heads to the large amount
of source data closes the FPR gap in the target domain. Increasing the amount of data in the target
domain significantly helps the performance of the “Target Only” and the “Source+Target” models.
This is intuitive since directly debiasing in the target domain is feasible with sufficient data. With
sufficient data, the results converge to be approximately equivalent to the transfer model. These
experiments show that the transfer model is effective in decreasing the FPR gap in the target domain
and is more sample efficient than previous methods.

Smallest FPR difference achieved on Target (FPR-diff ± std. dev)
Source to

Target
#Target
Samples Source only Target only Source + Target

With Transfer
Head

Dataset 1

Gender
to

Race

50 0.038 ± 0.013 0.033 ± 0.019 0.032 ± 0.020 0.020 ± 0.016
100 0.038 ± 0.013 0.038 ± 0.021 0.044 ± 0.024 0.040 ± 0.024
500 0.038 ± 0.013 0.053 ± 0.010 0.043 ± 0.017 0.025 ± 0.018
1000 0.038 ± 0.013 0.027 ± 0.018 0.027 ± 0.019 0.031 ± 0.021

Race
to

Gender

50 0.061 ± 0.054 0.035 ± 0.015 0.020 ± 0.026 0.008 ± 0.009
100 0.061 ± 0.054 0.028 ± 0.014 0.021 ± 0.015 0.009 ± 0.011
500 0.061 ± 0.054 0.028 ± 0.013 0.019 ± 0.013 0.014 ± 0.011
1000 0.061 ± 0.054 0.021 ± 0.012 0.015 ± 0.014 0.020 ± 0.014

Dataset 2

Gender
to

Race

50 0.027 ± 0.008 0.041 ± 0.006 0.009 ± 0.004 0.001 ± 0.001
100 0.027 ± 0.008 0.036 ± 0.007 0.005 ± 0.005 0.003 ± 0.001
500 0.027 ± 0.008 0.038 ± 0.008 0.003 ± 0.002 0.001 ± 0.001
1000 0.027 ± 0.008 0.021 ± 0.005 0.006 ± 0.005 0.002 ± 0.001

Race
to

Gender

50 0.040 ± 0.004 0.070 ± 0.005 0.035 ± 0.004 0.019 ± 0.002
100 0.040 ± 0.004 0.055 ± 0.007 0.034 ± 0.003 0.017 ± 0.002
500 0.040 ± 0.004 0.042 ± 0.008 0.027 ± 0.004 0.019 ± 0.002
1000 0.040 ± 0.004 0.034 ± 0.011 0.028 ± 0.004 0.018 ± 0.002

Table 1: Comparison between the proposed model and the baselines. The numbers in bold indicate
the smallest FPR difference achieved in the target domain w.r.t. varying number of target samples.

6 Conclusion

In this paper we provide the first theoretical examination of transfer of machine learning fairness
across domains. We have provided theoretical bounds on the transfer of fairness for equal opportunity
and, based on this theory, we developed a new modeling approach to transfer fairness to a given
target domain. In experiments we validate our theoretical results and demonstrate that our modeling
approach is more sample efficient in improving fairness metrics in a target domain.

2https://archive.ics.uci.edu/ml/datasets/adult
3https://github.com/propublica/compas-analysis
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A Related Work

This work lies at the intersection of traditional domain adaptation and recent work on ML fairness.

Domain Adaptation Both Pan et al. [26], and Weiss et al. [29] provide a survey on current work
in transfer learning. One case of transfer learning is domain adaptation, where the task remains the
same, but the distribution of features that the model is trained on (the source domain) does not match
the distribution that the model is tested against (the target domain). Ben-David et al. [2] provide
theoretical analysis of domain adaptation. Ben-David et al. [3] extend this analysis to provide a
theoretical understanding of how much source and target data should be used to successfully transfer
knowledge. Mansour et al. [25] provide theoretical bounds on domain adaptation using Rademacher
Complexity analysis. In later research, Ganin et al. [13] build on this theory to use an adversarial
training procedure over latent representations to improve domain adaptation.
Fairness in Machine Learning A large thread of recent research has studied how to optimize
for fairness metrics during model training. Li et al. [21] empirically show that adversarial learning
helps preserve privacy over sensitive attributes. Beutel et al. [4] focus on using adversarial learning
to optimize different fairness metrics, and Madras et al. [24] provides a theoretical framework
for understanding how adversarial learning optimizes these fairness goals. Zhang et al. [31] use
adversarial training over logits rather than hidden representations. Other work has focused on
constraint-based optimization of fairness objectives [14, 1]. Tsipras et al. [28] however, provide a
theoretical bound on the accuracy of adversarial robust models. They show that even with infinite
data there will still be a trade-off of accuracy for robustness. Kallus and Zhou [19] look at fairness in
personalization when sensitive attributes are missing. Similarly, Chen et al. [8] look at measuring
disparity when sensitive attributes are unknown.
Domain Adaptation & Fairness Despite the prevalence of using one model across multiple
domains, in practice little work has studied domain adaptation and transfer learning of fairness
metrics. Coston et al. [9] look at domain adaptation for fairness where sensitive attribute labels are not
available in both the source and target domains. Kallus and Zhou [18] use covariate shift correction
when computing fairness metrics to address bias in label collection. More related, Madras et al. [24]
show empirically that their method allows for fair transfer. The transfer learning here corresponds to
preserving fairness for a single sensitive attribute but over different tasks. However, Lan and Huan
[20] found empirically that fairness does not transfer well to a new domain. They found that as
accuracy increased in the transfer process, fairness decreases in the new domain. It is concerning that
these papers show opposing effects. Both of these papers offer empirical results on the UCI adult
dataset, but neither provide a theoretical understanding of how and when fairness in one domain
transfers to another.

B Proofs

Lemma 1. (From Ben-David et al. [3]) For any hypotheses h, h0
2 H,

|✏S(h, h
0)� ✏T (h, h

0)| 
1

2
dH�H(DS , DT ).

Lemma 2. (From [2, 10]) For any labeling functions f1, f2, and f3, we have

✏(f1, f2)  ✏(f1, f3) + ✏(f2, f3).

B.1 VC-dimension bounds

Lemma 3. (From Ben-David et al. [3]) Let H be a hypothesis space on Z with VC-dimension
d. If U and U

0 are samples of size m from D and D
0 respectively and d̂H(U ,U 0) is the empirical

H-divergence between samples, then for any � 2 (0, 1), with probability at least 1� �,

dH(D,D0)  d̂H(U ,U 0) + 4

s
d log(2m) + log( 2� )

m
.

Theorem 1. Let H be a hypothesis space of VC dimension d. If US0
0
, US0

1
, UT 1

0
, UT 0

1
are samples

of size m0 each, drawn from DS0
0
, DS0

1
, DT 0

0
, and DT 0

1
respectively, then for any � 2 (0, 1), with
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probability at least 1 � � (over the choice of samples), for every g 2 H (where H is a symmetric
hypothesis space) the distance from equal opportunity in the target space is bounded by

�EOpT
(g)  �EOpS

(g) +
1

2
d̂H�H(UT 0

0
,US0

0
) +

1

2
d̂H�H(UT 0

1
,US0

1
)

+ 8

s
2d log(2m0) + log( 2� )

m0
+ �0

0 + �0
1,

where �l
↵ = ✏Sl

↵
(g⇤, f) + ✏T l

↵
(g⇤, f).

Proof. Without loss of generality assume EZ0
0⇠DS0

0

� EZ0
1⇠DS0

1

. Then we can rewrite �EOpS
(g) as

follows:

�EOpS
(g) = EZ0

0⇠DS0
0

⇥
g(Z0

0 )
⇤
� EZ0

1⇠DS0
1

⇥
g(z01)

⇤

= EZ0
0⇠DS0

0

⇥
g(Z0

0 )
⇤
+ EZ0

1⇠DS0
1

⇥
1� g(z01)

⇤
� 1

= ✏S0
0
(g, f) + ✏S0

1
(1� g, f)� 1,

where the last line follows from the fact that equal opportunity only cares about the error on the false
data-points.

We now have the tools to find an upper-bound on �EOpT
(g).

�EOpT
(g) =✏T 0

0
(g, f) + ✏T 0

1
(1� g, f)� 1

 ✏T 0
0
(g, g⇤) + ✏T 0

0
(f, g⇤) + ✏T 0

1
(1� g, g⇤) + ✏T 0

1
(f, g⇤)� 1 (4)

= ✏T 0
0
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Where inequality 4 is due to lemma 2, inequality 5 is due to lemma 1 and the fact that H is a
symmetric hypothesis space, inequality 6 is due to lemma 2, equality 7 is due to the definition of �l

↵,
and inequality 8 is due to lemma 3.

C Experiment Setup

For the UCI adult dataset we used all 14 features as provided in https://archive.ics.
uci.edu/ml/machine-learning-databases/adult/adult.names. The original train/test split
is used. For the COMPAS dataset we used the features provided in https://github.com/
propublica/compas-analysis/blob/master/compas-scores.csv, and predict the risk of re-
cidivism (decile_score) for each row.

We did 10-fold cross-validation and choose the hyperparameters with the best performance on the
validation data. 64 dimension embedding is used for categorical features and 256 hidden units are
used in the model. We did parameter search and found 10K steps yields a good balance of runtime
and accuracy. Each run takes about 1hr for UCI data and 0.5hrs for COMPAS on a single CPU with
2GB RAM. Increasing learning rate speeds up experiments but also hurts accuracy slightly (e.g.,
~2pp decrease on UCI).

We considered the following range of parameters: (1) batch size: [64, 128, 256, 512]; (2) learning
rate: [0.01, 0.1, 1.0]; (3) number of hidden units: [64, 128, 256, 512]; (4) embedding dimension:
[32, 64, 128]. (5) number of steps: [5000, 10000, 20000, 50000].

D Experiment Results

D.1 Experiment Results for fairness on UCI and COMPAS

Figure 1 depicts the results of the analysis for transferring from gender to race, and from race to
gender, respectively, on the UCI dataset. Figure 2 show the results on the COMPAS dataset. The
line and the shaded areas show the mean and the standard error of the mean across 30 trials. These
experiments show that the Transfer model is effective in decreasing the FPR gap in the target domain
and is more sample efficient than previous methods.

D.2 Accuracy vs. Fairness/Transfer Head Weight

We further add the comparison on accuracy with respect to the weight of the fairness/transfer head.
Fig. 3 show the results comparing the Transfer model with the baselines, by transferring race to
gender, and race to gender, respectively, on the UCI dataset. Fig. 4 show the results on the COMPAS
dataset.
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(a) 50 race samples. (b) 100 race samples. (c) 500 race samples. (d) 1000 race samples.

(e) 50 gender samples. (f) 100 gender samples. (g) 500 gender samples. (h) 1000 gender samples.

Figure 1: Transfer Gender to Race (first row) and Race to Gender (second row) on the UCI dataset.
Comparison of FPR difference on the target sensitive attribute, by transferring from the source domain
(1000 samples) to the target domain (varying samples as indicated in the caption).

(a) 50 race samples. (b) 100 race samples. (c) 500 race samples. (d) 1000 race samples.

(e) 50 gender samples. (f) 100 gender samples. (g) 500 gender samples. (h) 1000 gender samples.

Figure 2: Transfer Gender to Race (first row) and Race to Gender (second row) on the COMPAS
dataset. Comparison of FPR difference on the target sensitive attribute, by transferring from the
source domain (1000 samples) to the target domain (varying samples as indicated in the caption).

(a) 50 gender samples. (b) 100 gender samples. (c) 500 gender samples. (d) 1000 gender samples.

(e) 50 race samples. (f) 100 race samples. (g) 500 race samples. (h) 1000 race samples.

Figure 3: Comparison of accuracy on the UCI data for Race to Gender (first row), and Gender to Race
(second row), by transferring from the source domain (1000 samples) to the target domain (varying
samples as indicated in the caption).

10



(a) 50 gender samples. (b) 100 gender samples. (c) 500 gender samples. (d) 1000 gender samples.

(e) 50 race samples. (f) 100 race samples. (g) 500 race samples. (h) 1000 race samples.

Figure 4: Comparison of accuracy on COMPAS for Race to Gender (first row), and Gender to Race
(second row), by transferring from the source domain (1000 samples) to the target domain (varying
samples as indicated in the caption).
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