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Abstract

We present work showing that a sparse, data-efficient ECG representation provides
predictive signal for myocardial infarction without any expert knowledge implicitly
or explicitly used to aid the model. Our process for extracting this representation is
scalabale, easily trained with small amounts of data, and ideal for deployment in
the low- and middle-income countries that most need early-warning systems for
myocardial infarction. We hope that the signal generated through this method can
be combined as a predictive feature in diagnostic models and eventually lead to
fully automated diagnostic systems in areas where access to trained cardiologists is
scarce.

1 Introduction

According to the World Health Organization, Cardiovascular Disease (CVD) is the leading cause of
death worldwide (CVD) [2018]]. 3/4 of these deaths are in low- and middle-income countries, where
access to trained experts (cardiologists and medical professionals) is scarce. Of those deaths, 85%
are due to heart attack (in medical terms, myocardial infarction) and stroke. The vast majority of
these deaths are preventable through early diagnosis and risk assessment, combined with lifestyle
changes. However, most of the people at risk do not have the means or access to experts to get those
early diagnoses.

Current state-of-the-art work in ECG analysis achieves high diagnostic accuracy for several disease
types, including myocardial infarction. However, in order to achieve these accuracies, the current
myocardial infarction models require heavy preprocessing which encodes expert knowledge. There
has been progress in using deep neural networks with raw (unprocessed) ECG data, however this is
primarily for arrhythmia diagnosis and requires datasets on the order of thousands of examples per
class in addition to substantial computational resources for training. This is usually not feasible for
practical diagnostics scenarios in low income countries. This research presents a different approach:
a sparse representation of ECG data that requires very small amounts of data, computational power,
and generates signal that is predictive for myocardial infarction.

2 Related Work

Automated ECG diagnosis has always been a difficult task, and any successful solution involves
significant tradeoffs. Therefore, it is important to develop solutions with the intended application
in mind, so that the tradeoffs we make are in line with our goals for deployment. Our intended
application is to provide an early-warning diagnosis without any expert knowledge, for use in
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countries and areas where access to experts is severely limited. Scalability and generalizability are
key to learning from small amounts of data (data-efficieny), which is a critical aspect of achieving
this goal.

The most successful traditional approach to ECG beat classification has been to use wavelet transforms
to extract relevant features Saxena et al.|[2002]. However, this type of analysis usually involves
several hand-crafted variables, including specially made denoising and band-pass filters that are tuned
to the specific frequency that is likely most predictive for a particular dataset|Iripathy and Dandapat;
[2017]). For example, if the hypothesis is that the P-wave of an ECG will be particularly predictive
for a specific disease or pathology, one would design a wavelet transform analysis to extract the
frequency, magnitiude, and variance information of P-waves in the presence of noise masking |Diery
et al.|[2011]]. Successfully executing wavelet transforms usually requires some expert knowledge
of how cardiologists interpret ECGs. They also require some dataset-specific crafting of filters and
preprocessing, which is not easily transferable to new data and prediction problems. Moreover,
they are often combined with traditional signal processing and expert systems for diagnosis, which
(while they definitely have their advantages in interpretability), are also not easily generalizable or
scalable without large hard-crafted collections of expert knowledge over which to reasonAl-Ani and
Ayal Rawi| [2013]].

Within the last two years, there has also been promising progress in deep learning for ECG analysis,
which has the benefit of not requiring the expert knowledge that is necessary for expert systems
and and traditional wavelet transform analyses. Deep learning has been known to be a tabula rasa
approach, where all relevant knowledge for prediction is extracted by the network itself. A downside
of this approach is a lack of interpretability or clinical accountability for diagnostic results. However,
interpretability is not as critical for our purposes of generating signal for an early-warning system
which will then be examined by a professional, so deep learning is a promising direction. The most
successful example of deep learning for ECG analysis used a 1-D convolutional neural network
with residual connections (a 1-D ResNet) in order to classify various types of arrhythmias [Hannun
et al.|[2019]. The model was able to achieve cardiologist-level performance. However, it requires
many thousands of training examples and only works for arrhythmias, which are irregularities in the
temporal domain, and are therefore easily capturable with 1-D convolutions over the time domain
data.

There have also been some approaches to combining deep learning approaches with data-efficiency,
such as transfer learning. Learning from small amounts of data is difficult and is key to the problem
we are trying to solve. Therefore, we hope that deep transfer learning approaches can combine well
with our extracted signal for completely automated diagnosis. The closest work to this approach
takes a 1-D convolutional resnet trained to distinguish arrhythmia ECGs and uses the final layer to
extract a deep representation of the ECG Kachuee ef al.|[2018]]. In a form of transfer learning, this
deep representation is then used to classify healthy vs myocardial infarction ECGs, with excellent
performance and test accuracies above 90%. However, following the common theme in requiring
extensive preprocessing, this work requires a detailed, 10-step preprocessing pipeline, which encodes
expert knowledge of ECG morphology. For example, a particularly good-quality/predictive 10s
subsegment of the larger ECG is chosen, and is then normalized and split into beats with an algorithm
that identifies R-peaks (a particular morphological feature of ECGs). For each R-peak, a section
of the signal of a particular (calculated and tuned) length is extracted around that peak. Only then
does the classifier yield excellent transferable performance. We are excited about the potential of
deep representations, but in this work they still require some amount of expert knowledge of ECG
morphology and human intervention to be executed. We hope that our representation, which is both
data-efficient and requires no expert knowledge, will work in tandem with deep representations as a
diagnostic feature, adding new valuable information which will increase overall signal and reduce the
need for complex preprocessing that is presently a bottleneck to generalizable, scalable, automated
systems.

3 PTB Diagnostic Database

To obtain raw ECG diagnostic data, we used the PTB diagnostic database [Bousseljot et al.| [2004]],
available through PhysioNet|Goldberger et al.|[2000 June 13]], for our work. A benefit of the PTB
database is its inclusion of supplementary data, including demographics and medical annotations,
which can be incorporated into future models. The database consists of 15-lead ECG data for 268
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subjects, falling into 8 diagnostic classes: myocardial infarction, cardiomyopathy, bundle branch
block, dysrhythmia, myocardial hypertrophy, valvular heart disease, myocarditis, healthy controls,
and “miscellaneous”. However, each of the diagnostic classes other than myocardial infarction and
healthy controls contain fewer than 20 samples. Myocardial infarction had 148 samples, and healthy
controls had 52, all from different patients. For this reason and the fact that we wanted to address the
leading (and most preventable) cause of cardiovascular death in low- and middle-income countries,
we chose to focus solely on myocardial infarction. The 15-leads consist of the conventional 12 leads
(i, 1, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6) in addition to the 3 Frank lead ECGs. For our diagnostic
models, we use only one of these leads (avr) as input. The recordings are of relatively high quality,
sampled at 1000Hz with 16-bit resolution over a range of 16.384 mV.

The duration of recorded ECGs varies by patient in the PTB database. To ensure uniformity in input
length for our model, we trimmed all ECGs to conform with the smallest recorded length, 38,400
samples. The trimming was automated and simply extracted the first 38,400 recorded data points for
each patient. This corresponds to a little over 30s of raw ECG data per patient, which was the input
to our representation algorithm.

4 Extracted representations

One of the biggest challenges of automatically extracting valuable information from an ECG signal is
its high dimensionality. Convolutional neural networks have gained a great deal of recognition in
recent years for their use in dimensionality-reduction. However, 1D convolutions for timeseries data,
such as an ECG, primarily useful for extracting temporal patterns (e.g. arrhythmia). This is because
they convolve over the time domain only. Autoregression helps solve this problem by providing an
intuitively recurrent feature extraction framework, adaptable to multiple diseases and requiring orders
of magnitude fewer data samples than a CNN.

Autoregressive parameter estimation essentially attempts to estimate the coefficients of a polynomial
that is representative of the data. Autoregressive processes are so named because they incorporate
their own output from a previous timestep into their input for a future timestep. The particular form of
autoregression we use is called Burg’s method, initially developed for spectral estimation. It estimates
the autoregressive coefficients best suited to the input signal by minimizing loss in forward and
backward prediction errors, constrained to satisfy Levinson-Durbin recursion |Al-Fahoum and A Al
Fraihat| [2014]]. The foundational Burg equation for power spectral density estimation (PSD) outputs
a much smaller set of extracted features, with minimal levels of noise and better frequency resolution.
This technique has been observed to have certain advantages over the fast-Fourier transform method
of feature extraction in other physiological signals, including EEG |Al-Fahoum and A Al-Fraihat
[2014]. Most importantly, it is scalable, requires no preprocessing, and (particularly compared to
deep learning) demonstrates valuable results even on small amounts of data.

5 C(lassification and evaluation

Due to class imbalance that can cause accuracy to be deceptively high, we opted instead for the
area under the receiver operating characteristic (ROC) curve as our evaluation metric. ROC AUC



Table 1: Classification accuracies for various classifiers trained ("Representation” column indicates
whether our extracted representation was used)

CLASSIFIER ROC AUC  REPRESENTATION
RANDOM FORESTS 0.69+ 0.03 4
GRADIENT BOOSTED TREE ~ 0.724+ 0.03 Vv
FC NEURAL NETWORK 0.63+ 0.04 4
LOGISTIC REGRESSION 0.67+ 0.03 Vv
K NEAREST NEIGHBOR 0.65+ 0.03 4
RNN 0.49+ 0.01 X
CNN 0.49+£ 0.01 X

is known to be a metric more robust to class imbalance and therefore more realistic to evaluate for
our purposes. We also calculated confidence intervals for our ROC AUC values, by calculating the
standard deviation across 10-fold cross validation.

We evaluated several different classifers using the extracted representations as input, and compared
the performance of each. Due to the well-established nature of these classification techniques, we
have kept explanations brief, with references for additional information. We used two tree-based
classifers, both ensemble methods: random forests |Ho| [[1995] and gradient-boosted trees |Friedman
[2002]. The random forest consisted of 10 decision trees. The gradient-boosted trees consisted of 100
trees, and a learning rate of 0.1. We also evaluated logistic regression, as well as a fully connected
neural network |van Gerven and Bohte|[2017]] with 2 hidden layers of 100 units each.

It is well known that deep learning requires large amounts of data to learn classification. We
hypothesized that our data would not be sufficient for deep learning techniques to yield predictive
extracted features. However, we decided to test this by including two deep learning baselines: The
first was a four-layer 1-D convolutional neural network (CNN) and the second was a recurrent neural
network with 1024 hidden units (using LSTM cells). The deep learning baselines do not use our
extracted representation, and are instead given the same raw ECG data that we use as the raw input to
our representation-finding mechanism. The purpose is to investigate whether deep learning is able
to conduct automated, predictive feature extraction with such a small amount of data. Architectural
specifications/details for both of these networks are provided as an appendix.

6 Results and Discussion

The resulting ROC AUCs demonstrate that the extracted representations provide predictive signal for
these models. Gradient boosted trees were most effective, and Random Forests came in a close second,
indicating that CART methods are promising for this type of extracted feature set. As expected with
such small amounts of data, both deep learning approaches fail to provide predictive signal. CART
methods tend to require less computational power than neural networks, which also makes them ideal
for deployment in low-income countries and settings where large amounts of computational power
are unavailable.

Predictive signal is a valuable starting point, and we hope that this work will be combined with other
predictive representations for stronger combined models that do not require large amounts of data
or any expert knowledge. These attributes will allow the models to easily scale to new patients in
low-income countries without access to cardiologists.

This is by no means the best classification performance achievable on this task—expert systems with
encoded knowledge have been shown to achieve accuracies greater than 90% for specific datasets.
However, this is a data-efficient representation, learned completely from scratch without need for
expert knowledge, that can easily transfer across datasets. We hope it can be combined with other
data-efficient techniques for finding representations, as in Kachuee et. al2018|, to improve predictive
performance and greatly reduce the need for expert knowledge even when we only have small
amounts of data. We hope that this will help bring diagnostic tools to settings where they are needed
most, democratizing access to cardiovascular healthcare.



7 Appendix: Deployment Suggestions

To gain a better understanding of the grassroots hurdles in implementing an early-warning diagnostic
system like this in the underprivileged areas of a low- or middle-income country, we observed and
consulted with doctors in several hospitals in Mumbai, India. By and large, doctors in hospitals of
the wealthier areas are not particularly interested in using an automated decision-aid for diagnosis.
However, doctors in government and publicly-funded hospitals are incredibly overworked. A filtration
system where patients are first screened through an autonomous system and then passed on to expert
cardiologists as needed would be an excellent fit for these settings. Additionally, preventative
screenings and lifestyle education will greatly reduce the number of patients with heart attacks and
strokes (which account for 85% of CVD deaths)|CVD|[2018]] that the hospitals have to treat, helping
ease the burden of doctors and facilities.

An example of such a system in action was pointed out to us: the "hub and spoke" model of medical
treatment has shown excellent results in the neighboring city of Chennai, India. In this system, rural
villages surrounding the city had smaller, mobile medical clinics, often with trained volunteers (but
no doctors) who conduct a series of routine tests for various diseases. Patients found to be at high
risk in these "spoke" areas are then fed into the "hub", or the more advanced medical centers at the
heart of the city. Cardiology is one area where expert knowledge is still very necessary to make any
kind of a diagnosis, and trained volunteers can’t provide the kind of screening patients need. We have
shown that these methods can provide predictive signal without any expert knowledge or help from
trained cardiologists. Systems derived from our methods, that are data-efficient, scalable, and require
no expert knowledge, are an excellent fit to fill this gap and help address a preventable, worldwide
cardiovascular disease epidemic.
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