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Abstract

We applied zero-shot transfer learning to classify vocalizations from a nonverbal
individual with autism using captured audio. Data were recorded in natural envi-
ronments using a small wearable camera and sparsely labeled in real-time with a
custom-built open-source app. We then trained LSTM models on VGGish audio
embeddings from the generic AudioSet database for three categories of vocaliza-
tions: laughter, negative affect, and self-soothing sounds. We applied these models
to the unique audio recordings of a young autistic boy with no spoken words.
The models identified laughter and negative affect with 70% and 69% accuracy,
respectively, but classification of the self-soothing sounds produced accuracies
around chance. This work highlights both the need and potential for specialized,
naturalistic databases and novel computational methods to enhance translational
communication technologies in underserved populations.

1 Background and motivation

A major challenge in deep learning is generalization, particularly for small, noisy datasets from
uncurated, naturalistic domains. To build machine learning-based technology for these realistic
scenarios, we need strategies that leverage existing well-validated deep learning datasets. In this
paper, we introduce a novel dataset of sparsely labeled naturalistic vocalizations from a minimally
verbal (mv) individual with autism spectrum disorder (ASD) that includes over 13 hours of audio. To
the authors’ knowledge, this is the first dataset of its kind. We designed an approach to collect this
dataset, including in-the-moment labeling to denote affective states and communicate intent using a
custom open-source mobile app. We then employed a zero-shot transfer learning approach [27] to
adapt an LSTM model trained on subclasses of a large, generic audio database to classify an autistic1

child’s non-speech vocalizations.

There are over 800,000 people in the United States with nonverbal or minimally verbal ASD,
meaning they use zero or fewer than 20 words/word approximations, respectively [3, 2]. Previous
applications of machine learning in ASD populations have focused on diagnosing ASD in naturalistic
and laboratory settings [34, 23, 16, 8] or detecting a single emotional valence in laboratory or
outpatient care settings using physiology [13, 14, 19, 18, 21]. Most approaches have relied on labels
by professionals, like researchers and therapists. Prior work in classifying non-speech vocalizations
has focused on classifying typically developing infant cries by need (e.g. hunger, pain) using both
humans and machines [35, 20, 25, 31, 5, 11]. Infant cries have also been used to diagnose ASD

1Both “person-first”[1] and “identity-first” [6] language will be utilized interchangeably in this work.
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Figure 1: In the proposed platform, audio acquired in real-time is processed through a pre-trained
LSTM model and “translated” into shareable communicative content.

[32]. There has been extensive prior work on affect detection in speech with typical verbal content
[29, 30, 10, 28, 24, 7], including in ASD populations with verbal abilities in task-driven [22, 4] and
natural settings [26]. However, no known work to date has attempted to classify communicative
content in vocalizations from non-infant children or adults who are minimally or non-verbal.

The presented work was motivated by a real, vetted need. We conducted interviews and surveys
with over 75 families and individuals with who had speech and language challenges and found that
miscommunication was reported as a major source of stress. Respondents with ASD also noted that
existing communication augmentation devices were difficult to use or did not sufficiently capture
affect or complex communicative intent. For these individuals, affect or intent was often conveyed
through non-traditional vocal communication such as hums, consonant utterances, babbling sounds.
These utterances could have specific known meanings, such as “buhbuh” for “go to the playground,”
while others may have less clear mappings, like high-pitched yells to indicate general frustration.
The parents of minimally verbal autistic children reported that they understood their offspring’s
communicative intent significantly better than others who interacted with their child, like teachers
and babysitters. Hence, a machine that could learn from or with an expert caregiver could enable
visiting caregivers to understand the individual more effectively, which is the motivation for this work
(see Figure 1). Given the high heterogeneity of the mvASD population, it was necessary to begin
with a deep case study.

2 Naturalistic dataset: collection and characterization

Data collection methods Data were collected with a non-speaking autistic boy of elementary
school age. After providing informed consent/assent, the participant wore a t-shirt with an inexpensive
mini-camera in the front pocket. Single channel audio was recorded at 32 kHz and 16 bits per second.
The participant and his family were asked to continue their regular activities (playing, running errands,
etc.) during recording sessions.

Early iterations of this study indicated that retrospective labeling of multi-hour videos by a caregiver
was impractical. Since the same labeling by the researcher introduced a bias we were trying to avoid,
a custom Android app2 was developed to enable “live labeling” of affective states and communicative
indicators by the caregiver in real time. The app included button-based labels like “request,” “protest,”
“laughter,” and other customizable labels, and the caregiver was instructed to label the child’s
vocalizations as soon as possible as they occurred. All labels from the app were timestamped and
then synced to a server at the user’s discretion.

As with any naturalistic or longitudinal dataset, the data acquired for this work posed a number
of ethical and practical considerations that we have attempted to address. For example, the data
collection methodology was developed over a 5-month iterative process with the pilot family and
was designed to be inexpensive (i.e., easily replaced and deployable), comfortable, and unobtrusive.
Paired with the open-source live-labeling app, this method enables a tenable solution for remote data
collection – a critical feature for future participants in this underserved, geographically dispersed
population – with minimal participant and caregiver burden. Privacy concerns for naturalistic audio
and video remains an open and active field. In our study, participants had the ability to review
and delete video/audio segments before sharing them with the research team. In the future, the
final released dataset will include only a de-identified feature set (without raw video or audio) from
participants who have chosen to opt-in.

2This app is open source and available by emailing the authors.
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Figure 2: a) Each video in the AudioSet database [12, 15] was human-labeled using 527 possible
event classes. b) We selected appropriate positive/negative classes from AudioSet to include in three
different models of mv01 vocalizations. c) The LSTM model was trained on VGG-like (VGGish)
embeddings of the selected subsets of AudioSet data. The inference task used the VGGish embeddings
of the mv01_test data.

Dataset characterization and structure The acquired dataset, referred to in this paper as mv01,
contains approximately 850 minutes of data spread across 5 non-consecutive days. Sessions ranged
in length from 78 to 262 minutes, with an average session length of 168 minutes. The participant’s
caregiver live-labeled for a subset (approximately 15-30 minutes) of each session. Labels and
vocalizations were non-uniformly distributed and regularly occurred in clusters – e.g., the participant
often went 20-30 minutes without making a sound, and then made several vocalizations within a few
minutes. Because of this, test segments for the models were selected to include clusters of live labels.

The first 3 days of data collection, containing 529 minutes of data, was used for validation
(mv01_validate). The last 2 days of data, containing 312 minutes of data, was held out for testing
(mv01_test) in an effort to mimic performance on true future data. The validation (test) set contained
177 (70) labels, covering 12 (7) label categories. For this work, we evaluated 3 frequent label cate-
gories: self-talk, laughter, and negative affect. Self-talk describes babbling, sing-song, or humming
sounds not overtly associated with a communicative interaction and generally indicative of positive
affect. Laughter was used as an easily recognizable indicator of model robustness. Negative affect is a
meta grouping encompassing three live labels: frustration, protest, and dysregulation. “Dysregulation”
tends to occur when the child is over- or under-stimulated. The labels in this meta-category produced
similar vocal sounds, including high-pitched yells, whoops, and audible teeth grinding.

3 Machine learning approaches

Small, sparsely-labeled datasets pose a challenge in many naturalistic applications of deep learning,
particularly when working with specialized populations as in mv01. In this dataset, the live labels
do not point to a precise audio segment; rather they indicate a general time period where an event
occurred (⇠ ±3s). Hence, the mv01 dataset is not ideal for model training in its current state because
of the lack of true, well-aligned labels for audio events and the small number of labels for each
category. Note that future work will explore alignment methods, like dynamic time warping, to
prepare the dataset for use in training semi-supervised models and other transfer learning approaches.
Here, we took a zero-shot transfer learning approach to examine how models trained with a large,
generic audio dataset performed with non-traditional vocalization data, and to inform how to augment
training data for improved model performance with mvASD individuals.

In this work, the mv01 dataset was used to validate and test models trained on subsets of the AudioSet
database [12, 15]. AudioSet is a large public database containing over 2 million 10-second segments
from YouTube (see Figure 2a). Each segment has been human-labeled using 527 audio event labels,
from speech to music to nature sounds. The AudioSet database includes subtypes of vocalizations,
such as babble, giggle, wail, whimper, and sigh; however, no single category sufficiently captures the
nuances of the vocalizations made by our pilot participant.

We first identified the three most frequently labeled categories from mv01: Self-Talk, Negative Affect
(meta-category), and Laughter. We then manually selected AudioSet labels to create positive and
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Table 1: Confusion matrices for the three mv01 models using held-out test data

Self-Talk Actual
Yes No

Pred Yes 0.33 0.67
No 0.41 0.59

Accuracy: 0.511

Neg. Affect Actual
Yes No

Pred Yes 0.46 0.54
No 0.27 0.73

Accuracy: 0.690

Laughter Actual
Yes No

Pred Yes 0.18 0.82
No 0.06 0.94

Accuracy: 0.703

negative classes for each category based on our knowledge of the audio content in the mv01_validation
data (see Figure 2b). For example, in the Laughter model, the positive class included Audioset data
for belly laugh, giggle, chuckle, and similar sounds. The negative class included sounds that might
confuse the model, like speech, and other sounds that were common in the participant’s environment
but that we did not want to model, like music. Note that using distinct models for each category (Self-
Talk, Negative Affect, and Laughter) allowed us to explore overlapping identifications of ambiguous
sounds. Feedback from the participant’s caregiver was that the highest priority was identifying audio
events of interest, even at the cost of a higher false positive rate, so the final positive/negative classes
for each model were selected with this criterion in mind. The complete list of AudioSet labels used
for each model is available in the Supplementary Material.

Using VGGish [9], each 0.96s of audio from the selected classes of AudioSet was converted into a
high-level 128-dimensional feature vector (see Figure 2c). These embeddings were then fed into
three-layer LSTM models that used batch normalization and Adam optimization [17] with balanced
positive and negative classes, similar to [33]. The probability of a successful classification was
determined using overlapping 9.6s segments with a window step size of 0.96s. Probability thresholds
were selected for each model based on the performance with mv01_validation: 0.80 for Self-Talk,
0.70 for Negative Affect, and 0.95 for Laughter. To evaluate each model’s efficacy, a 5-minute
segment was selected from mv01_test for each category, and each second was hand-coded by the
caregiver before the models were tested. The caregiver’s live labels were used to identify a segment
with many instances of that category before coding, addressing one of the challenges of sparse data
discussed earlier. The performance of each model on the test data is summarized in Table 1.

4 Discussion and future work

The Laughter model produced an accuracy of approximately 70% and a strong true negative rate,
correctly recognizing when audio segments were not laughter. However, its low true positive rate
may be a consequence of the highly varied and noisy environment of real-world data. The Laughter
and Negative Affect models performed similarly, with accuracies much higher than that of Self-Talk,
which had an accuracy around chance. These results may be related to the availability – or lack
thereof – of accurately representative event classes in the AudioSet dataset. For example, while
AudioSet contained sounds similar to the participant’s Negative Affect (e.g., yell, whoop, groan),
the Self-Talk model was largely trained on infant babbling sounds or young children speaking with
typical verbal content. Although we used the closest sounds available, it may be that neither of these
event classes accurately represented the sing-song vocalizations of an elementary-aged child. In
addition to any content differences between vocalizations in mv01 and AudioSet, the waveforms and
spectral decompositions of naturalistic data are also distinct, as visible in Figure 2.

This dataset is one of the first of its kind and an important step in developing algorithms that can
generalize to sparse, naturalistic data. The challenge of creating models using imprecise real-time
labels in a small audio dataset with unique vocal characteristics may be best posed for a semi-
supervised learning approach. In addition, future work will explore direct transfer learning between
the VGGish embedding spaces of AudioSet and mv01. Contextual information from audio and
video data could also be incorporated as features in future model iterations to improve model
performance. The planned release of the de-identified dataset will include features representing
contextual information that captures the environment surrounding the data, such as background noises
and presence of other speakers. These results serve as a charge to build datasets and algorithms that
enhance communication in minimally and non-verbal ASD populations. We invite other researchers
to join us in exploring this unique and important challenge.
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As discussed in the text, the three model categories are Laughter, Negative Affect, and Self-Talk. Each 
positive class contains sounds that were similar (or as similar as possible) to the child’s vocalizations for 
that category. Each negative class contains sounds that might confuse the model because they sounded 
similar to the child’s vocalizations in a different category or appeared frequently in the dataset. 
 

Index Label Name Laugh Neg. Aff Self-Talk    
0 Speech                Positive class 
1 Male speech                Negative class 
2 Female speech                
3 Child speech                
4 Conversation               
5 Narration               
6 Babbling                
7 Speech synthesizer              
8 Shout              
9 Bellow              

10 Whoop               
11 Yell              
12 Battle cry              
13 Children shouting              
14 Screaming              
15 Whispering             
16 Laughter                
17 Baby laughter                
18 Giggle                
19 Snicker                
20 Belly laugh                
21 Chuckle, chortle                
22 Crying, sobbing               
23 Infant cry               
24 Whimper              
25 Wail, moan              



26 Sigh             
27 Singing               
28 Choir              
29 Yodeling              
30 Chant             
31 Mantra              
32 Male singing               
33 Female singing               
34 Child singing               
35 Synthetic singing              
36 Rapping             
37 Humming              
38 Groan              
39 Grunt              

 . . .             
45 Pant              

 . . .             
63 Clapping              

 . . .             
69 Crowd              
70 Speech babble              

 . . .             
137 Music              

 . . .             
161 Percussion              

 . . .             
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