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Abstract

United Nations practice shows that inclusivity is vital for mediation to be successful
in helping end violent conflict and establish lasting peace. However, current
methods for understanding the views and needs of populations during dynamic
situations create tension between inclusivity and efficiency. This work introduces
a novel paradigm to mitigate such tension. In partnership with collaborators
at the United Nations we develop a realtime large-scale synchronous dialogue
process (RLSDP) to understand stakeholder populations on an hour timescale.
We demonstrate a machine learning model which enables each dialogue cycle
to take place on a minute-timescale. We manage a key risk related to machine
learning result trustworthiness by computing result confidence from a fast and
reliable estimation of posterior variance. Lastly, we highlight a constellation of
risks stemming from this new paradigm and suggest policies to mitigate them.

1 Introduction

Violent conflict leads to deaths, poor health, degraded education, inequality, and economic loss. Since
2011, conflicts worldwide have killed up to 100,000 people a year [1], with indirect deaths estimated
to be 3-15 times greater [2]. By 2030, over half of the world’s poor is projected to be living in
countries affected by high levels of violence [1]. Migration, malnutrition, destroyed infrastructure,
and distressed environments due to conflict lead to poor health [3], increased infant mortality [4], and
decreases in the quality of childhood education [5]. Conflict tends to disproportionately impact those
with lower socio-economic status, leading to increased economic inequality [6]. And, the overall
economic losses due to conflict have doubled over the last decade to an estimated $1.02 trillion per
year ($3 billion per day) [7].

While ceasefires are helpful in preventing escalation once a conflict has begun, long-term peace
often requires a successful dialogue and mediation process between the parties. Consequently,
over $27b is spent annually on peacebuilding efforts [7]. Article 33 of the Charter of the United
Nations stresses that “the parties to any dispute, the continuance of which is likely to endanger the
maintenance of international peace and security, shall, first of all, seek a solution by negotiation,
enquiry, mediation, conciliation, arbitration, judicial settlement” [8]. UN practice shows that for a
mediation and dialogue process to be successful, inclusivity is vital. The UN defines “inclusivity” as
the extent and manner in which the views and needs of conflict parties and other stakeholders are
represented and integrated into the process and outcome of a [conflict] mediation effort [9]. Given
the large number of stakeholders in most conflicts, mediators are often hard-pressed for ways to poll
the positions, needs, and interests of stakeholder populations. Further, the reality that the positions of
these populations tend to shift, as the dynamics of a conflict or dialogue process evolve, presents a
unique challenge.
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Consequently, mediators have to grapple with potential tensions between inclusivity and efficiency
[10]. Additionally, while machine learning has the potential to increase efficiency, it is often viewed
as too risky for high-stakes decisions [11], suffering from a lack of result trustworthiness [12]. As a
means to decreasing these tensions, in partnership with collaborators at the UN, we develop a realtime
large-scale synchronous dialogue process (RLSDP) enabled by machine learning and manage risk
related to result trustworthiness by computing result confidence from a reliable estimation of posterior
variance. Further, we highlight risks stemming from this new paradigm and suggest policies to
mitigate them.

2 Methods

Dialgoue process. Prior methods to gather the views and needs of stakeholder populations for
inclusivity include asynchronous dialogue platforms, surveys, focus groups, and social media analysis
[10]. However, these methods manifest a tradeoff between conversational agility and statistical
reliability. We aim to bridge this tradeoff by designing an approach with the agile dynamics of live
conversation at a statistically relevant scale.

We specify a RLSDP to be characterized by a continuous sequence of minute-scale exchanges
between dialogue moderators and a large participating population. Each minute-scale cycle of the
dialogue process includes four phases:

(i) An open ended question is sent by the dialogue moderators.
(ii) The participating population responds with natural language answers then votes on other

participants’ responses.
(iii) Results are computed which include the fraction of the participating population predicted to

agree with each answer and the confidence of each prediction.
(iv) The dialogue moderators review the results and derive learnings which can inform the next

dialogue cycle.

Model. During phase (ii) of the RLSDP we employ two types of voting exercise: agreement and pair
choice. In the first, a participant is shown a response and asked if they agree with it. We denote the
the event that participant i reports agreement with response j by aij , and disagreement by dij . In the
second, the participant is shown two responses and asked which they prefer. We denote the event that
participant i reports preference of response j over response k by cijk. The minute-scale timing of the
cycle constrains the total number of exercises per person to be on the order ten. However, the number
of participants and thus the number of expected responses is much larger. As a consequence, the first
challenge is reminiscent of compressed sensing: given a sparse sampling of exercise data, maximize
accuracy in predicting the fraction of participants which agree with each response.

As a baseline, we consider the representative agent model of choice where each response has a utility
(independent of the participant) mj , so that p(aij |mj) = σ(mj) = qj [13]. We will refer to this as
the binomial model of choice. A prominent example is of individual-level choice is probabilistic
matrix factorization (PMF) [14], popularized by its success in the famous Netflix prize competition.
In this context, choice is modeled at the individual level, at the cost of making strict assumptions
on the number of factors involved in decision making. This amounts to an upper bound on the rank
of the participant-to-item utility matrix. A closely related approach, matrix completion, drops these
assumptions and instead uses the low-rank promoting nuclear norm prior. [15]

Letting A = {i, j | aij}, D = {i, j | dij}, C = {i, j, k | cijk}, and denoting the logistic function by
σ, yields the likelihood

p(A,D,B |M) =
∏
i,j∈A

σ(mij + bi)
∏
i,j∈D

(1− σ(mij + bi))
∏

i,j,k∈C

σ(mij −mik).

We now define the nuclear norm || · ||∗. Let X ∈ Rd1×d2 be any arbitrary matrix with singular
value decomposition X = UΣV ∗. Then ||X||∗ := tr(Σ) is the sum of the positive singular values
σ1 ≥ σ2 ≥ . . . ≥ σr > 0 of X . As insig for nuclear norm minimization in low-rank matrix
completion, we remark that one may also view || · ||∗ as the L1 norm of the vector of singular
values and thus one may roughly translate the sparsity inducing effects of L1 regularization into rank
minimizing effects of the nuclear norm.
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We apply a uniform prior over the nuclear norm ball of radius τ . Hence the posterior is

p(M |A,D,B) =
1

Z
p(A,D,B |M) · 1||M ||∗<τ

Z :=

∫
Rn×m

p(A,D,B |M) · 1||M ||∗<τdM.

The second challenge is to estimate the posterior variance needed to compute confidence in predictions
within the live timescale. Sufficiently simple models such as the binomial model may admit exact
computation of posterior variance. In the case of more realistic models of individual choice, it
is necessary to make an approximation. The canonical approaches to approximation of posterior
variance and other probabalistic quantities of interest are variational inference [16], and Markov
chain Monte Carlo methods (MCMC) [17]. Recently, stochastic weight averaging (SWA) [18] has
emerged as a promising local approximant to the posterior. Here, we compare SWA and MCMC
methods to obtain confidence estimates in the context of a RLS dialog. For sampling techniques, it
suffices to instead work with the unnormalized posterior p(A,B |M)1||M ||∗ < τ . The stochastic
weight averaging begins from an MLE or MAP estimator, and runs stochastic gradient descent at a
high learning rate η = 1. The iterates are taken as a local surrogate for samples from the posterior.

3 Data and Implementation

Experiments were conducted in a low risk environment. Data was obtained from a sample of
110 participants solicited through the Amazon Mechanical Turk crowdworking platform. The task
description was "participate in a live online conversation about your experience as a crowdworker."
Participants were instructed to "write a brief, thoughtful response, and evaluate and compare each
others’ responses." They were asked five questions [A1]. For each question, an average of 136
responses, 1537 agreement exercises, and 1453 pair-choice exercises were collected over the course
of 4 minutes.

We implemented the SWA model in PyTorch, and used a Hamiltonian Monte Carlo (HMC) model
with the same loss function using Tensorflow and the Tensorflow probability library. As a proxy for
repeating the data collection with the same questions and varying duration, the data was split fifty
times into training sets including between 5% and 95% of the data. We used samples from each
model to approximate the posterior standard deviation of the marginal distribution of agreement for
each response 1

N

∑
i σ(mij). We analytically computed posterior standard deviation for the binomial

model with an uninformative Beta( 1
2 ,

1
2 ) prior for agreement with each response.

4 Results

We compute the accuracy of the model on a holdout set of agreement voting exercise as the total
data-points per participant used to train the model is varied [figure 1(a)]. An equal number of
agreement and choice tasks was determined to be near optimal [A2] and thus used at training time.
Accuracy increases linearly initially and the levels off at around 15 data points per participant to
about 70-80% using SWA. We note that the parameters obtained via SWA are significantly better
predictors than their HMC counterparts over all ranges, most likely due to their relative proximity to
the MLE.

Confidence is probed by computing the posterior standard deviation of the marginal distribution of
population agreement for each response. We compare our model trained using SWA and HMC with
a representative agent baseline over a range of data points per participant [figure 1(b)]. Over the
entire range explored our model significantly outperforms the baseline for both training methods. At
15 data points per person our model yields a one statndard deviation confidence range of ±1.5%.
The average mean absolute error (MAE) between confidence from SWA and HMC is computed for
different ranges of data points per person [table 1]. At less than 2 data points per person SWA appears
to significantly overestimate confidence. As the number of data points per person increase confidence
estimates from SWA and HMC converge, with mean absolute error converging to about 0.2% at 15
data points per participant. Over this range, SWA runtimes are observed to be less than 1/100th as
long as those from HMC.
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Figure 1: Training results as a function of data per participant. Ranges shown for validation accuracy
and posterior standard deviation. Means denoted as solid line.
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Table 1: Comparison of runtimes and mean absolute error (MAE) between confidence estimates for
SWA and HMC across ranges of data per participant (DPP).

Mean runtime (s)

DPP SWA HMC MAE

2.5-5 9.44 356.31 9.63× 10−3

5-7.5 12.33 567.74 7.10× 10−3

7.5-10 11.10 833.41 5.95× 10−3

10-12.5 10.45 1186.67 4.77× 10−3

12.5-15 11.28 1216.39 3.18× 10−3

15-17.5 10.53 1407.59 1.90× 10−3

17.5-20 9.82 1809.92 2.03× 10−3

20-22.5 9.71 1881.24 1.96× 10−3

5 Conclusions, Risks, and Policies

We conclude that at 15 data points per person our ML model predicts the fraction of a participating
population which agrees with a response with reasonably high confidence and that SWA can be used
to reliably estimate confidence in seconds. This translates to feasibly executing phases ii and iii of
an RLSDP in about 2 minutes. At this timescale, many cycles of an RLSDP can reliably take place
over the course of a one hour dialogue process. Our next step is to pilot an RLSDP in the context
of a mediation process, and impose de-risking policies, before deploying it into mediation of active
conflicts. If successful deployment of an RLSDP is able to decrease the time to resolve one major
conflict by one week, we estimate it could save 230 lives and $380 million in economic loss [A3].

Any deployment of a realtime large-scale synchronous dialogue process (RLSDP) warrants managing
at least three categories of risk. The first risk is inaccurate results due to non-representative data.
This can result from bias in questions, disengaged participants, or a participating population which
is not representative. The latter can be the result of poor sampling or malicious actors. A policy to
manage this first risk may include requirements that (a) dialogue moderators be trained in asking
unbiased questions, (b) an appropriate population sampling and participant validation scheme be
applied, and (c) randomized human verification of general data quality be conducted. The second
risk is inaccurate results due to poor performance of a prediction model. This can result from a
faulty machine learning model or programming errors. A policy to manage this risk may include the
requirement for appropriate model verification to take place on production deployments. The third
risk is inaccurate conclusions due to misinterpretation of results. This can happen because the results
are interpreted in the absence of proper context or confidence in the results are miscalibrated. A policy
to manage this risk may include the requirements that (a) proper context be identified and integrated
into the interpretation of results and (b) all ML-based results include estimates of confidence.
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Appendix

A1

Summary of data collected for each question including number of participants, text responses submitted,
agree/disagree votes collected, and number of paired comparison votes collected. Note that participants could
submit multiple text responses per question.

Question Participants Responses Agree/Disagree Paired comparisons

What is your favorite
thing to do in your
free time?

111 108 2030 1951

What motivates you
the most in life, and
why?

108 154 1489 1367

What will be the most
important political is-
sue in 5 years?

95 136 1345 1262

What could Amazon
do to improve your
experience on Me-
chanical Turk?

101 147 1283 1232

A2

Validation accuracy in predicting agreement voting exercises as the mixture of agreement and pair-choice voting
exercises was varied and the total voting exercises was held fix. Ranges shown for validation accuracy with
mean denoted as solid line.
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A3

Taking 100k people killed in conflict per year [1] plus the average of 5 times more indirect deaths [2] gives a
total of 600k deaths per year due to conflict. We note $1 trillion in economic loss per year [7] and 49 conflicts
per year [19]. This means the average conflict causes about 12k deaths and $20b in economic loss per year or
about 230 deaths and $380m per week.
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