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Abstract

Homophily – the tendency for individuals to form social ties to others who are
similar to themselves – is one of the most robust sociological principles, leading to
patterns of linkage in social networks that segregate people along many different
demographic dimensions. This phenomena, in turn, can result in inequalities in
access to information and opportunities by members of different demographic
groups. As we consider potential interventions that might alleviate the effects of
network segregation, we face the challenge that homophily constitutes a pervasive
and organic force that is difficult to push back against. The design of interventions
can therefore benefit from identifying counterbalancing natural processes in the
network that might be harnessed to work in opposition to segregation. In this
work, we examine several fundamental network formation models to show that
triadic closure is one such process. Our analyses show the power for triadic closure
to reduce network segregation at the level of graph structure. We believe that
the insights in this work have qualitative implications for the design of network
interventions in settings such as online platforms and college dorm assignments,
where the designer has a vested interest in mitigating network segregation.

1 Introduction

Across societies, the tendency for individuals to form social ties with others with whom they share
similarities is a robust and pervasive social phenomena impacting the formation of social networks
[26, 27, 29, 30]. This phenomena, known as homophily, can result in segregation; and since networks
play a key role in the diffusion of information, opportunities, and resources, it can lead to inequalities
across members of different communities; empirical and theoretical work has shown that network
structures can influence individuals’ ability to obtain accurate and relevant information, garner social
support, improve their labor market outcomes, among many other impacts [4, 7, 8, 18, 21, 35, 31].

Understanding how network formation processes are impacted by homophily is important for predict-
ing and improving societal welfare in various domains. However, since homophily is a potent and
organic force, it is challenging to push back against its negative consequences without identifying
other social processes that may already be working against segregation. By pinpointing such network
forces and understanding their interactions with homophily, we can then harness their impact to
improve network diversity and welfare of individuals across the network.
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In this work, we show that triadic closure – the process by which individuals are more likely to
form social ties with other individuals with whom they already share ties – may be one such force
[16, 25, 32]. Through analyses of different fundamental and popular network formation models, we
show that triadic closure has the tendency to reduce network segregation. That is, even though biases
towards homophily in link formation tend to push a network towards segregation, triadic closure has
the effect of exposing people to dissimilar individuals, thereby resulting in more integrated networks.
We find it striking that such a tension should exist between two such well-studied social processes as
homophily and triadic closure, and we believe it points to the possibility of broader phenomena that
we begin exploring in this paper.

The tension between these two forces is also partly counter-intuitive: triadic closure produces
links between people with common friends, and we might therefore suspect that these new links
reinforce the underlying similarity that the friends share; but the longer-range nature of triadic
closure, connecting people separated by multiple steps in the network, in fact has the aggregate
effect of exposing nodes to others who are dissimilar in the models that we consider. Indeed much
work, including recent work, has asserted that triadic closure can result in social segregation at the
macroscale [34, 37].

In this work, we explore this relationship between these phenomena by analyzing the effect of triadic
closure on the proportion of links between dissimilar agents on different static and dynamic network
formation models. The models we consider are characterized by the presence of heterogeneous nodes
and a two phase link-formation process where agents first form a fixed set of links followed by a
triadic closure phase were they form an additional set of links through a friend-of-friend search.

2 Triadic Closure and Stochastic Block Models

We begin with a simple static model based on stochastic block models (SBM). We suppose that there
are n nodes corresponding to individuals, where each node can be one of k types. We assume that
there are an equal number of nodes of each type. Note, we assume that all edges formed in this model
and the next one are undirected.

In an SBM with k types, there is a probability p of an edge forming between two nodes of the same
type (this is the in-block probability) and a probability q of an edge forming between two nodes of
different types (this is the out-of-block probability). All edge formations are mutually independent.
We first run an SBM to obtain a network G. We then consider the effect of triadic closure on G. In
order to do so, we must first study wedges in G.

A wedge W in a graph G is an induced subgraph on nodes {v1, v2, v3} such that there exists edges
(v1, v2) and (v2, v3), but there exists no edge between nodes v1 and v3. We denote this wedge W
using (v1, v2, v3).

Definition 1. We say W = (v1, v2, v3) is a monochromatic wedge if v1 and v3 share a type.
Otherwise, we say it is a bichromatic wedge.

Definition 2. Given a set of nodes T = {v1, v2, v3}, we say that T is a monochromatic triplet if all
three nodes share a type and we say that it is a bichromatic triplet otherwise.

Monochromatic and bichromatic wedges correspond to wedges where the missing edges are
monochromatic and bichromatic, respectively. Note, further, that a monochromatic wedge can
result from either a monochromatic or a bichromatic triplet, whereas a monochromatic triplet can
only yield a monochromatic wedge. An object of interest in this section is the fraction of bichromatic
wedges, which we denote by w(G). We can estimate this value using the following result, presented
here for the case where k = 2:
Lemma 3. Given a network G resulting from an SBM, the expected number of monochromatic
wedges is

3 · 2 ·
(
n/2

3

)
· p2(1− p) + n ·

(
n/2

2

)
· q2(1− p), (1)

while that of bichromatic wedges is

2 · n ·
(
n/2

2

)
· pq(1− q). (2)
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This follows a straightforward counting argument. The proof of this lemma as well as the subsequent
theorem are presented for the general case of k ≥ 2 in the appendix.

We then consider the effect of triadic closure on network integration. Specifically, we measure
network integration using the proportion of bichromatic edges: i.e., the fraction of edges in G
between nodes of dissimilar types, denoted by f(G). We say that triadic closure increases network
integration if, by closing a single randomly selected wedge, we increase the fraction of bichromatic
edges. We can likewise define decreasing network integration and preserving network integration.3

Theorem 4. Given an SBM, there is a sufficiently large n such that triadic closure increases network
integration if p > q and it preserves network integration if p = q.

3 A Dynamic Network Formation Model

We now consider a dynamic process of network formation, based on a natural variation of a popular
growing graph model by Jackson and Rogers [22]. In this Jackson-Rogers model, homogeneous
nodes arrive sequentially and form links first through a random meeting phase, where a new node
selects random nodes to link with, and next through a network search phase, where this node expands
its set of neighbors through linking with its friends-of-friends.

We adapt this model to account for heterogeneous nodes. As in the previous section, we assume that
each node can be one of two types and that there are an equal number of nodes of each type. The
model proceeds as follows: nodes arrive to the network consecutively. When node v arrives

I it selects NS neighbors uniformly at random from nodes of the same type and ND neighbors
uniformly at random from nodes of a different type, then

II it selects NF additional neighbors according to the following biased friend-of-friend search
process: suppose α ∈ (0, 1]. Let FS(v) be the set of same-type neighbors that v selected
in the first phase and F 2

S(v) = {w : u ∈ FS(v), (u,w) ∈ G(t − 1)} be the neighbors
of v’s same-type neighbors. (We can similarly define FD(v) and F 2

D(v).) Then v selects
αNF nodes uniformly at random among F 2

S(v) and (1− α)NF nodes uniformly at random
among F 2

D(v) and creates links.

In this above model, time moves in discrete steps t = {0, 1, 2, . . .}, and G(t) denotes the correspond-
ing graph at time t. We let N := NS + ND + NF and so the number of edges in G(t), which we
denote by m(t), is Nt. We assume that NS , ND, NF are all fixed constant values.

We assume here that nodes show type-bias. i.e., that NS > ND and that α > NS

ND+NS
.

We denote the equilibrium state network, that is G(t) as t→∞, by G. To ensure that this process is
well defined, we let G(0) a stochastic block model on N nodes and we let each node select NF

ND+NS

nodes to form links with uniformly at random. We assign each node a random type.

We are interested in the network integration, as measured by the fraction of bichromatic edges,
in equilibrium. We denote by f(t) the fraction of bichromatic edges at time t. Here, we want to
show that f(t) converges and that we can fully characterize its value in equilibrium. Let b(t) be the
number of bichromatic edges at time t and recall that m(t) is the number of all edges. Therefore,
f(t) = b(t)/m(t).

Given a node v, we let fv(t) be the fraction of v’s neighbors that do not share a type with v. We can
then define

fR(t) =
1

|R|
∑
r∈R

fr(t).

Note that this is an average value over all nodes of type R. We can similarly define fB(t).

Since this is a growing graph, the degree of nodes also evolves. Namely, as time proceeds, each node
has more opportunities to form more links. We denote the degree of node v at time t by ∆v(t) and

3Note that these definitions are local: they analyze the impact of a single triadic closure. Note, however, that
for large n, this observation on network integration applies for the case where we can instead consider the effect
of an unbounded but sublinear number of simultaneous triadic closures.
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define

∆R(t) =
1

|R|
∑
r∈R

∆r(t).

That is, ∆R(t) is the average degree of an R node at time t.

Without loss of generality, suppose a new node v of type R is added at time t+ 1. Then,

b(t+ 1) = b(t) +ND + αNF fR(t) + (1− α)NF (1− fB(t)) (3)

Our analysis below involves a step in which we establish an identity (Identity 1, below) on the
long-run fraction of bichromatic edges f(t) using a heuristic argument that is supported by numerical
simulation. The identity is as follows. Let f∗ denote the limiting fraction of bichromatic edges of
G(t) as t goes to infinity. Then we have

(Identity 1) f∗ =
ND + (1− α)NF

ND +NS + 2(1− α)NF
.

We note that f(t) shows that the fraction of bichromatic links formed in the first phase can have a
disproportionate impact on the network integration in equilibrium. For instance, for α = 1, which
corresponds to the instance where all friend-of-friend links are formed through same-type friends,
f(t) = ND

NS+ND
, indicating that this value is exclusively determined by the first phase despite the

assumption that NS +ND is much less than NF . The role of NF in the fraction of bichromatic edges
in equilibrium increases as α decreases. Further, for any α < 1, f(t) approaches 1/2 as NF grows
large relative to NS and ND. So even a single off-type seed friend can have a significant down-stream
impact, if triadic closure is not perfectly driven by same-type friends.

3.1 Triadic Closure and Network Integration.

As above, we say that triadic closure increases network integration if f∗ goes up as NF goes up, we
say that it decreases network integration if f∗ goes down as NF goes down, and that it preserves
network integration if f∗ is unaffected by NF . Recall that we assume that nodes show type-bias: i.e.,
NS > ND and α > NS

ND+NS
.

Theorem 5. Assuming Identity 1, triadic closure increases network integration in our dynamic
network formation model if α < 1 if nodes show type-bias in the first phase and preserves network
integration if nodes show no bias. Triadic closure preserves network integration for α = 1.

Proof. Select NF , NF ′ such that NF < NF ′ . Denote by f∗ and f ′∗ the fraction of bichromatic links
in equilibrium state for NF and NF ′ , respectively. We are interested in the inequality f∗ ≤ f ′∗,
which we can rewrite as

ND + (1− α)NF

ND +NS + 2(1− α)NF
≤ ND + (1− α)NF ′

ND +NS + 2(1− α)NF ′

We can simplify this above inequality to get

2ND(NF ′ −NF ) ≤ (NS +ND)(NF ′ −NF ).

This holds with strict inequality if ND < NS and with equality if ND = NS .

For the degenerate case where α = 1, note f∗ and f
′∗ are both ND

NS+ND
. That is, the fraction

of bichromatic edges is determined exclusively by the random meeting phase and triadic closure
preserves network integration in this setting.

Note that for the case where NS = ND, triadic closure preserves network integration even if nodes
show type-bias in the second phase, by forming a disproportionate number of links through their
same-type friends. Likewise, for the case where α = 1, triadic closure preserves network integration
regardless of the type-bias that nodes show in the first phase. Outside of these two degenerate cases,
we note that triadic closure has the effect of increasing network integration.
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4 Conclusion and Future Work

In this work, we consider the effect of triadic closure on network segregation in this work. Through
analysis of different static and dynamic network formation models, we find that triadic closure has
the effect of increasing network integration, indicating that it may be a process that counteracts
homophily in network formation. We view the insights in this paper as potentially pointing to broader
phenomena about these social processes, which can be studied both mathematically as well as analysis
of real-world networks.

The results presented in this work open up questions related to other measurements of network
health, such as network expansion and distribution of network centralities. Each of these points to
challenging analytic questions. Empirically, it would also be interesting to shed light on what types
of social and information networks tend to exhibit a stronger relationship between triadic closure and
homophily.

In ongoing work, we find that the insights above can help inform network interventions to minimize
segregation. Namely, in many scenarios, an authority that has a vested interest in the outcome of a
network process can attempt to nudge the network towards a more integrated state. For example,
on-line networking platforms recommend links to create a warm start for new users, as well as to fill
out established networks. We find evidence that minor and local interventions on homophily acting in
the early stages of a network formation process can be amplified through triadic closure, resulting in
an indirect yet substantial shift on the network integration. Through ongoing work, we are exploring
both the theoretical problem of finding optimal network interventions and empirically analyzing their
effect on network integration.
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We present missing proofs and additional discussions in this appendix.

A Triadic Closure and Stochastic Block Models

Recall that for ease of presentation in the main text we state results for the case where k = 2. We
remove this assumption and present generalized results below.

Lemma 6. Given a network G resulting from an SBM with k ≥ 2, the expected number of monochro-
matic wedges is:

k∑
i=1

(
3

(
n/k

3

)
p2(1− p) + (n− n/k)

(
n/k

2

)
q2(1− p)

)
(4)

while that of bichromatic wedges is

k∑
i=1

2(n− n/k)

(
n/k

2

)
pq(1− q). (5)

Proof. The first term in Equation 4 results from the expected number of monochromatic wedges from
a monochromatic triplets is where

(
n/k
3

)
counts the number of monochromatic triplets of each type, 3

is the number of ways to choose the center of the wedge, and p2(1−p) counts the likelihood that such
a triplet results in a wedge. The second term results from the expected number of monochromatic
wedges from a bichromatic triplet, where (n− n/k)

(
n/k
2

)
counts the number of bichromatic triplets

and q2(1− p) corresponds to the likelihood that such a triplet results in a monochromatic wedge.

Likewise, for Equation 5, we note that (n− n/k)
(
n/k
2

)
counts the number bichromatic triplets. Such

a triplet results in a bichromatic wedge with probability pq(1− q).

We can similarly analyze the effect of triadic closure on network integration for k ≥ 2.

Theorem 7. Given an SBM with k ≥ 2, there is a sufficiently large n such that triadic closure
increases network integration if p > q.

Proof. The fraction of bichromatic edges, f(G), in this general case is:

f(G) =
1
2

∑
i
n
k

(
n− n

k

)
q

1
2

∑
i
n
k

(
n− n

k

)
q +

∑
i

(
n/k
2

)
p

=
n
2

(
n− n

k

)
q

n
2

(
n− n

k

)
q + k

2

(
n
k

)2
p

=

(
n2

2 −
n2

2k

)
q(

n2

2 −
n2

2k

)
q + n2

2k p
+ o(1)

=
q(k − 1)

q(k − 1) + p
+ o(1)

Using the above lemma, we can simplify the fraction of bichromatic wedges to be

w(G) =
(k − 1)pq(1− q)

(k − 1)pq(1− q) + p2(1−p)
2 + k−1

2 q2(1− p)
+ o(1)

As above, we are interested in the inequality f(G) ≤ w(G) for large enough n.
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That is,

q(k − 1)

q(k − 1) + p
≤ (k − 1)pq(1− q)

(k − 1)pq(1− q) + p2(1−p)
2 + k−1

2 q2(1− p)
(k − 1)3q3(1− p)

2
+

(k − 1)qp2(1− p)
2

≤ (k − 1)qp2(1− q)

(k − 1)2q2(1− p) + p2(1− p) ≤ 2p2(1− q)
(k − 1)2q2(1− p) ≤ p2(1− 2q + p)

We therefore look at the expression

p2(1− 2q + p)− (k − 1)2q2(1− p).

For k > 2 and q ∈ [0, 1], this expression as roots at

q =
p2 −

√
−kp4 + 2p4 + kp2 − p2
(p− 1)(k − 1)

.

We therefore have that triadic closure preserves network integration for q =
p2−
√
−kp4+2p4+kp2−p2

kp−k−p+1

and increases integration for q less than this value.

The expression
p2(1− 2q + p)− (k − 1)2q2(1− p)

simplifies to p2(1− p)k(2− k) for q = p. This value is positive if k > 2. Therefore, the insight that
triadic closure increases network integration in the setting where nodes exhibit type-bias holds for
k ≥ 2.

Figure 1: Wedge counts as we vary p and q for (a) monochromatic wedges, (b) bichromatic wedges,
and (c) difference between monochromatic and bichromatic wedges for n = 100.

Note that for the case where k = 2, we find that f(G) < w(G) if p > q and f(G) = w(G) if p = q;
triadic closure increases network integration if nodes display homophily and it preserves network
integration when there is no homophily. We note the following necessary subtlety in the argument
for k = 2 which also extends to the general case. An SBM with p > q always has f(G) < 1/2
for sufficiently large n, since f(G) = q/(p + q) + o(1). Thus, one might imagine a strategy for
proving this theorem that sought to show w(G) ≥ 1/2, which would be sufficient. However, this is
not always the case as we can see from Figure 1 – in particular, for low values of q and high values
of p, there can be more monochromatic wedges than bichromatic wedges, and hence w(G) < 1/2.
Given this observation, we must therefore focus on a more careful analysis of the relative sizes of
f(G) and w(G).

B A Dynamic Network Formation Model

We present a heuristic argument to support Identity 1 in this section. First, we compare fR(t), fB(t),
and f(t). By running simulations on various parameters, we find that fR(t) and fB(t) both also
converge to f∗ for large enough t. This observation agrees with the intuition that the model proceeds
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Figure 2: Values for fR(t), fB(t), and f(t) as NS goes from 1 to 10 for ND = 10 − NS and
NF = 20.

by adding a node of a random type then proceeding symmetrically regardless of the node type.
Therefore, as the network approaches the equilibrium state, we can also expect the fR(t) and fB(t)
to approach this value by symmetry.

We run the plots for Figure 3 above on n = 500 nodes and average over 10 trials. We note that these
values on the fraction of bichromatic edges, including those disaggregated by type, converge to the
expected values relatively quickly. And, most notably, fR(t) and fB(t) show comparable values for
a range of α values. Note that we run these plots for a combination of NS +ND and NF values and
the qualitative insights remain the same.

Lemma 8. The fraction of bichromatic edges of G(t) as t goes to infinity converges to:

f(t) =
ND + (1− α)NF

ND +NS + 2(1− α)NF
.

Proof. In equilibrium, f(t+ 1) = f(t). Therefore:

b(t)

m(t)
=
b(t) +ND + αNF f(t) + (1− α)NF (1− f(t))

m(t) +N

Nb(t) = m(t) (ND + αNF f(t) + (1− α)NF (1− f(t))

Nf(t) = ND + αNF f(t) + (1− α)NF − (1− α)NF f(t)

Nf(t) = ND + (2α− 1)NF f(t) + (1− α)NF

f(t) =
ND + (1− α)NF

N + (1− 2α)NF

This last equality holds since N = NS +ND +NF .

Rate of Convergence.

Finally, we find that we can also explicitly state how each of these parameters impact the rate at
which the network converges to the equilibrium state for our dynamic network formation model.

At equilibrium, f(t) = f(t+ 1). We are therefore interested in

f(t+ 1)− f(t)

=
ND + αNF f(t) + (1− α)nF (1− f(t))

NS +ND +NF
− f(t)

We solve the differential equation,

df(t+ 1)

dt
=
ND + 2αNF f(t) + nF (1− f(t))

NS +ND +NF
− f(t)

to get that,
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f(t) =
ND +NF − c · exp(−(t(NF − 2αNF ))/(N)

NS +ND + 2(1− α)NF

where c is some constant. In addition to impacting the equilibrium state, triadic closure also affects
the rate of convergence to this state. This holds even for the case where α = 1 when triadic closure
preserves network integration.
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