

USCViterbi

School of Engineering

Improving tuberculosis treatment by integrating optimization and learning

Bryan Wilder, Jackson Killian, Amit Sharma, Vinod Choudhary, Bistra Dilkina, Milind Tambe

Research

Microsoft[®]

Tuberculosis treatment

- 2.8 million cases in India alone
- Treatment: 6 months of daily antibiotics
- Low adherence leads to **reinfection** and **drug resistance**

Adherence tracking with 99DOTS

- Patients call each day after taking medication
- Health worker observes adherence for their patients

How can ML help?

Health workers have **limited resources** (100+ patients/worker)

Combining ML and optimization

- Aim: solve a resource allocation problem for health workers
- Status quo: follow-up with patients is **reactive**
 - Visit patients who have stopped adhering
- Goal with ML: **proactive** interventions \bullet
 - Visit patients predicted to not adhere

Objective is predicted from past data

Typical two-stage approach

Goal: maximize decision quality

Challenge

- Maximizing accuracy \neq maximizing decision quality
- "All models are wrong, some are useful"
- Two-stage training doesn't align with end goal

How can machine learning training incorporate the objective of a combinatorial optimization problem?

End-to-end training

- Approach: differentiate optimal solution with respect to θ , train model via gradient descent
- Challenge: the optimization problem is discrete! • Solution: relax to continuous problem, differentiate that, and then round

Proposed training method

Traditional training method

Results: 99DOTS data from Mumbai

() () ()

 $\overline{\mathbf{O}}$

- Data from 17,000 patients in Mumbai \bullet
- Predict 1-week adherence with LSTM
- Compare status quo, standard two stage training, and decision-focused training

Wilder et al. Melding the Data-Decisions Pipeline: Decision-Focused Learning for **Combinatorial Optimization. AAAI 2019**

Killian et al. Learning to Prescribe Interventions for Tuberculosis Patients using Digital Adherence Data. KDD 2019

Less "accurate", but +15% successful interventions!