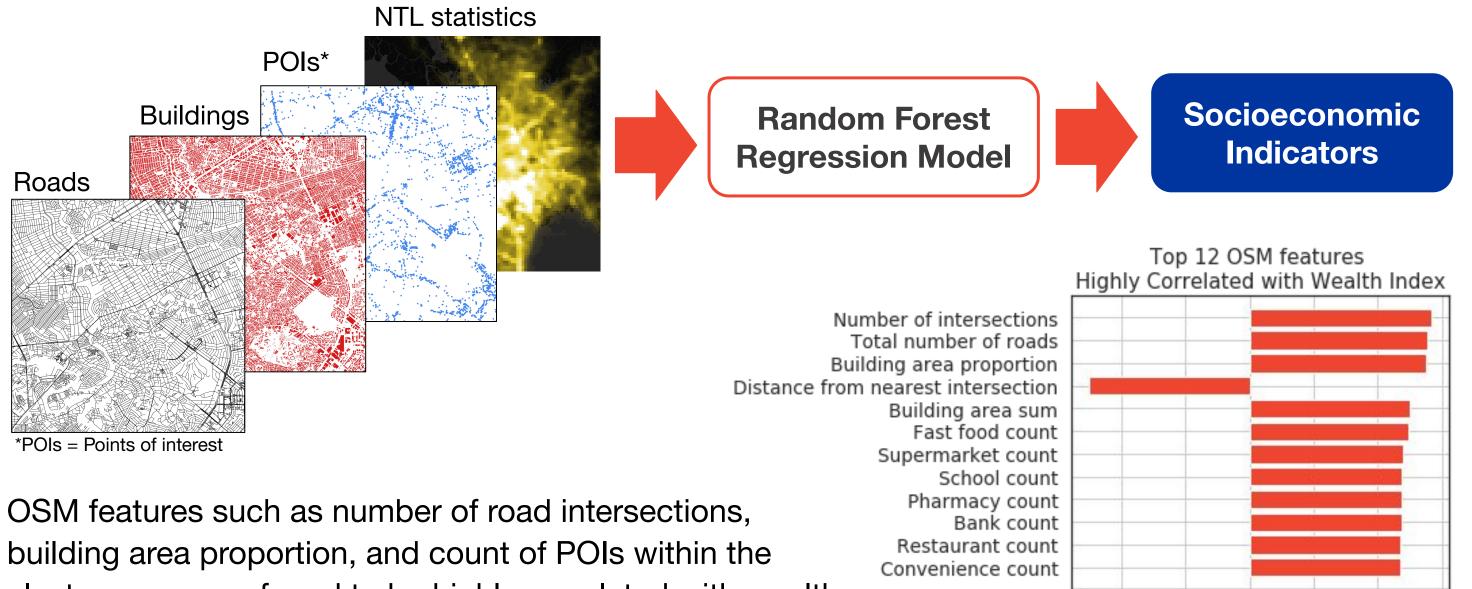
Mapping Poverty in the Philippines using Machine Learning, Satellite Imagery, and Crowdsourced Geospatial Information

Isabelle Tingzon^{1,‡}, Ardie Orden^{1,‡}, Stephanie Sy¹, Vedran Sekara², Ingmar Weber³, Masoomali Fatehkia³, Manuel Garcia Herranz², Dohyung Kim²

¹Thinking Machines Data Science, ²UNICEF, ³Qatar Computing Research Institute

Motivation

- Around 22 million Filipinos live below the national poverty line.
- A major challenge in fighting poverty is the lack of reliable socioeconomic data, which is often expensive, time-consuming, and labor-intensive to collect.
- Traditional Filipino household surveys can cost up to 1.5M USD, are conducted every 3-5 years, and are often aggregated to the provincial or regional level.
- **Goal**: *Faster*, *cheaper*, and *more granular* estimation of poverty measures and socioeconomic indicators in the Philippines.
- 2. Cost-effective alternative approach using volunteered geographic information from OpenStreetMap and nighttime light summary statistics from VIIRS DNB [1]



Research Objectives

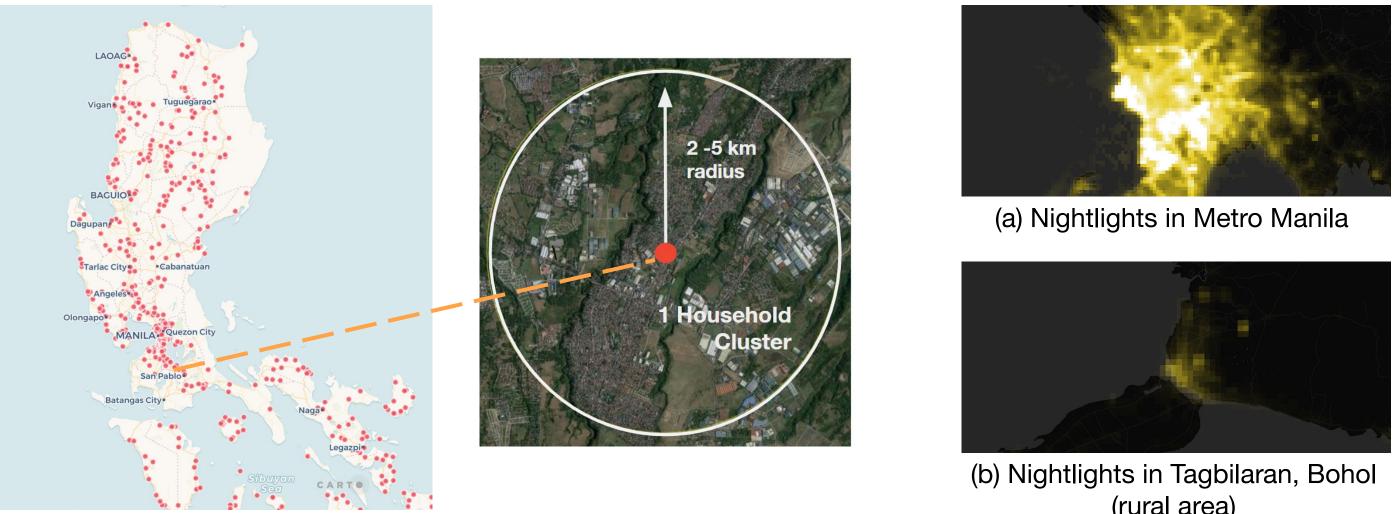
We seek to answer the following questions:

- 1. Are satellite-based methods developed for poverty prediction in other countries applicable within the Philippine context?
- 2. How well do predictive models trained on free and publicly available crowdsourced geospatial information compare against state-of-the-art methods for Philippine poverty estimation?

Datasets

We used the following datasets in this study:

- Philippine Demographic and Health Survey (DHS) 2017 (Ground-truth)
- Nighttime lights (NTL) data taken from Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB) 2016 [1]
- Daytime satellite images accessed via Google Static Maps API
- High Resolution Settlement Layer (HRSL) by Tiecke et al. [2]
- Volunteered geographic information (VGI) from OpenStreetMap (OSM)

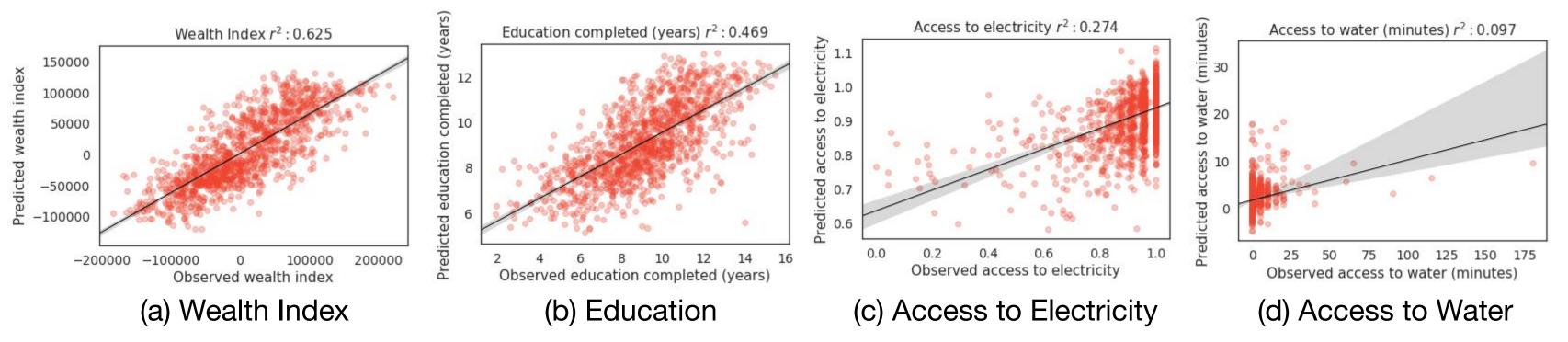


cluster area were found to be highly correlated with wealth.

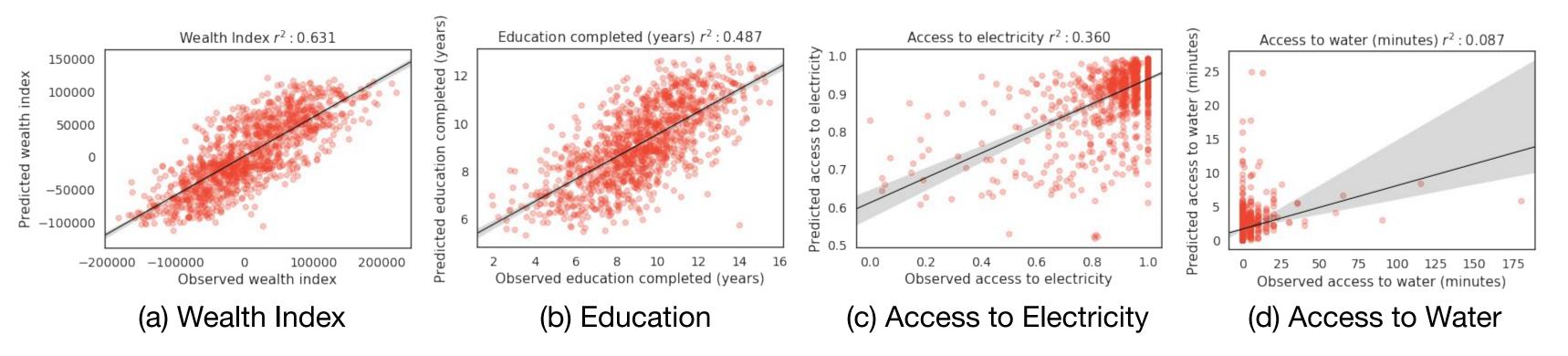
-0.50 -0.25 0.00 0.25 0.50 Spearman's Rank Correlation Coefficien

Results

We present the cross-validated predictions and r-squared scores for four different socioeconomic indicators.



Ground-truth and cross-validated Philippine poverty predictions using the satellite-based deep learning model* by Jean et al. [3].



(rural area)

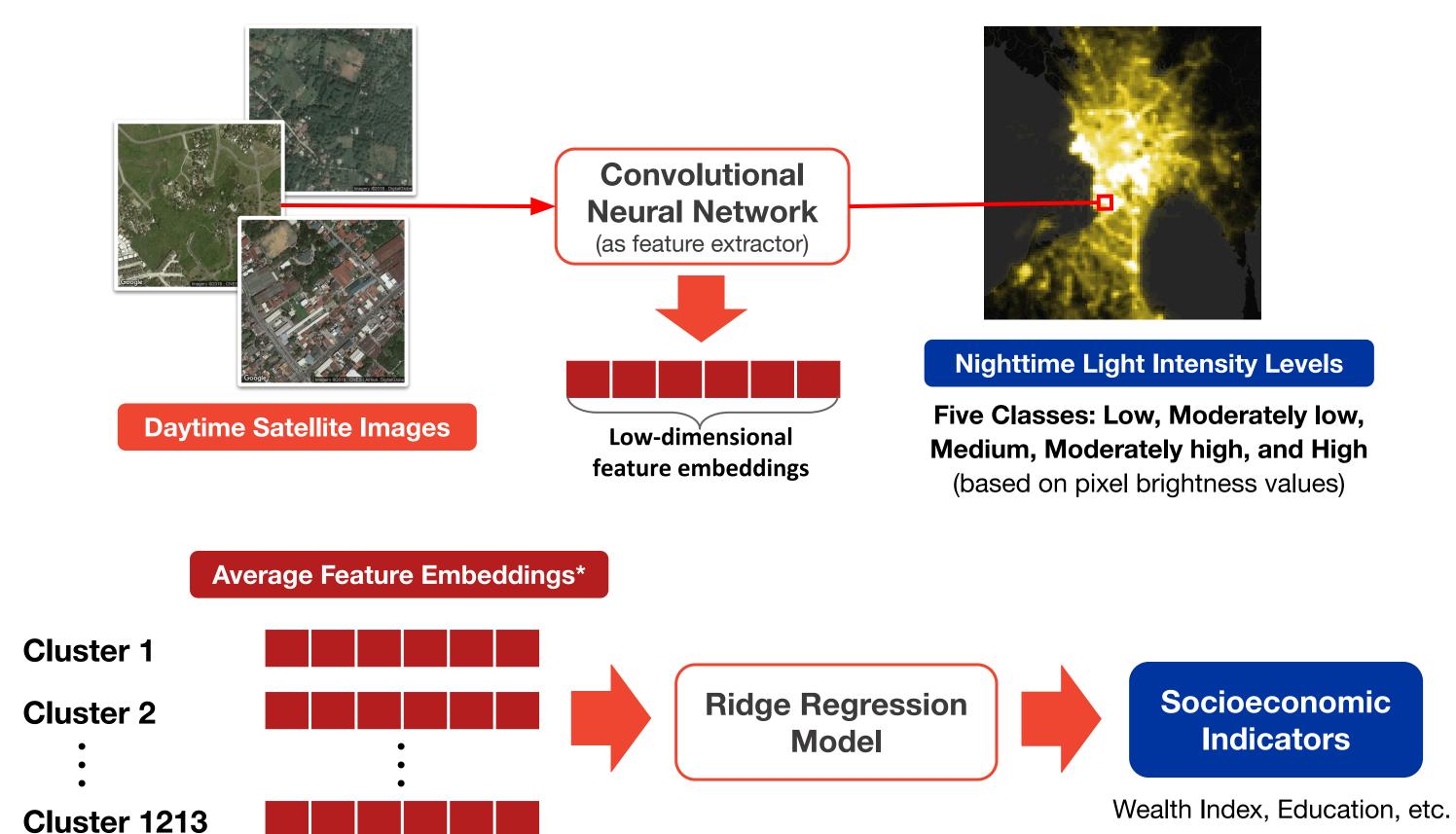
بعهد قطب ليحوث الحوسة

The DHS contains 1,213 clusters, where each cluster consists of up to 44 households. A cluster location is defined by the mean latitudes and longitudes of households within a 2 km (urban) or 5 km (rural) radius.

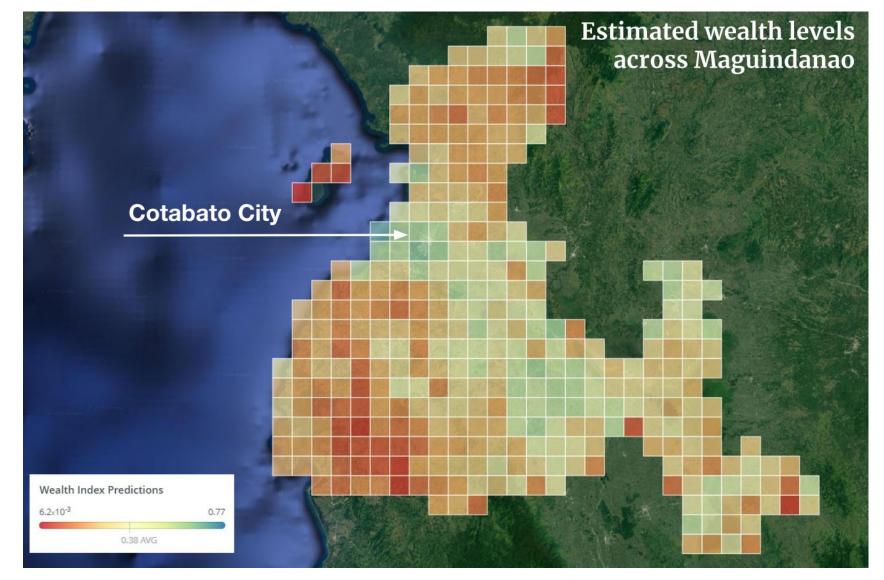
Methodology

We describe the different methods used in predicting socioeconomic well-being. All models were evaluated using a five-fold nested cross validation scheme.

Satellite-based deep learning approach as described by Jean et al. [3]



Ground-truth and cross-validated Philippine poverty predictions using the hybrid OpenStreetMap + nighttime lights model*.

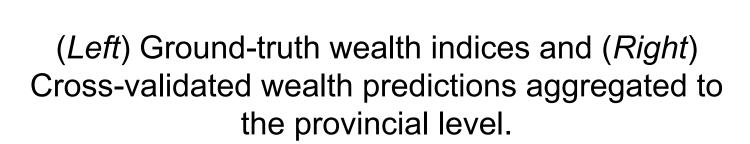


High resolution (18 sq. km) wealth estimates for Maguindanao, a conflict area in Southern Mindanao

*Note: Model incorporates binary regional indicators as input features.

Conclusions

• We investigated the extent to which state-of-the-art remote-sensing methods can be



*Average feature embeddings of up to 400 image tiles within a 2km (urban) or 5 km (rural) radius from the cluster centroid. We removed images containing no human settlements using the HRSL dataset by Tiecke et al. [2]

[‡]{issa, ardie}@thinkingmachin.es https://github.com/thinkingmachines/ph-poverty-mapping

applied in the Philippine context to predict different socioeconomic indicators.

- We also proposed a cost-effective approach that leverages a combination of volunteered geographic information from OpenStreetMap and nighttime lights satellite imagery for estimating socioeconomic indicators.
- The best models explain approximately 63% of the variation in asset-based wealth.
- Our findings indicate that models trained on free and publicly available volunteer-curated geographic data achieve roughly the same predictive performance as that of models trained using proprietary satellite images.

References

[1] NOAA National Centers for Environmental Information. VIIRS DNB Dataset. https://ngdc.noaa.gov/eog/viirs/download_ dnb_composites.html, 2016. Online; accessed 18 December 2018.

[2] T.G. Tiecke, X. Liu, A. Zhang, A. Gros, N. Li, G. Yetman, T. Kilic, S. Murray, B. Blankespoor, E.B. Prydz, H.H. Dang. Mapping the world population one building at a time. arXiv 1712.05839, 2017.

[3] N. Jean, M. Burke, M. Xie, W.M. Davis, D.B. Lobell, S. Ermon. Combining satellite imagery and machine learning to predict poverty. Science, 353(6301): 790-794, 2016. DOI: doi.org/10.1126/science.aaf7894