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With	growing	role	of	social	media	in	shaping	public	opinions	and	beliefs	across	the	
world,	there	has	been	an	increased	attention	to	identify	and	counter	the	problem	
of	 hate	 speech	 on	 social	 media.	 Hate	 speech	 on	 online	 spaces	 has	 serious	
manifestations,	 including	 social	 polarization	 and	 hate	 crimes.	 While	 prior	 works	
have	 proposed	 automated	 techniques	 to	 detect	 hate	 speech	 online,	 these	
techniques	 primarily	 fail	 to	 look	 beyond	 the	 textual	 content.	 Moreover,	 few	
attempts	 have	 been	 made	 to	 focus	 on	 the	 aspects	 of	 interpretability	 of	 such	
models	given	the	social	and	legal	implications	of	incorrect	predictions.	In	this	work,	
we	propose	a	deep	neural	multi-modal	model	that	can:	(a)	detect	hate	speech	by	
effectively	capturing	the	semantics	of	the	text	along	with	socio-cultural	context	in	
which	a	particular	hate	expression	 is	made,	and	(b)	provide	 interpretable	 insights	
into	 decisions	 of	 our	 model.	 By	 performing	 a	 thorough	 evaluation	 of	 different	
modeling	 techniques,	we	 demonstrate	 that	 our	model	 is	 able	 to	 outperform	 the	
existing	state-of-the-art	hate	speech	classification	approaches.	Finally,	we	show	the	
importance	 of	 social	 and	 cultural	 context	 features	 towards	 unearthing	 clusters	
associated	with	different	categories	of	hate.		

Abstract	 where	P,	Q,	R	are	neural	architectures	extracting	semantic	features	from	tweet	text	
(P)	 [1]	 and	 socio-cultural	 features(R,	 Q)	 [2]	 from	 author	 information;	 g	 is	 the	
function	that	determines	the	fusion	strategy.		
	
	
 
 
 
 
 
	
 
 
 
 
 

Dataset	

The	 data	 includes	 tweets,	 author	 attributes	 and	 social	 structure	 represented	 by	
author's	followers	and	friends.	Let	us	denote	our	hate	dataset	as	D(H)	=	{(w1,	a1),(w2,	
a2),	....,	(wn,	an,)},	where	each	tuple	in	this	set	consists	of	the	tweet	text	wi,	author	
information	ai	used	to	derive	social	and	cultural	context	associated	with	the	tweet.	
Defining	the	input	as	xi=(wi,	ai),	we	denote	our	model	as:	

	fθ(xi)	≈	gθ(P(wi),	Q(ai),	R(ai))	

Methods	and	Materials	

•  Tables	 show	 that	 social	 and	 cultural	 context	 improves	 the	performance	of	our	
model	significantly	compared	to	purely	state-of-the-art	text-based	models.		

•  The	results	 indicate	that	the	model	that	uses	social	and	cultural	context	is	able	
to	 produce	 better	 clusters	 having	 more	 overlap	 with	 good	 hate	 categories	
compared	to	the	text	only	model.		

	
	
	
	
	
	
	
	
	
	

Evaluation	

•  We	developed	a	comprehensive	model	to	automatically	detect	hateful	content.	
•  We	adopt	different	feature	extraction	strategies	for	different	modalities	of	data:	

text,	demographic	information	and	social	graph.	
•  We	derive	important	insights	about	our	model	and	its	ability	to	understand	hate	

speech	code	words	and	cluster	into	different	categories	of	hate	speech.		

Conclusions	

	
	
	
	
	
	
	
	
Tweets		
In	order	to	expand	our	dataset,	we	perform	an	exploratory	search	on	Twitter	that	
consists	of	phrases	containing:	
(a)	swear	words	combined	with	positive	adjectives	(eg.	“f**king	awesome”,	“damn	
good”,	“bloody	wonderful”)	
(b)	swear	words	combined	with	races,	religions,	sexual	orientations	or	derogatory	
references	to	them.	(e.g.	“f**king	ragheads”,	“sh**ty	muslims”)	
	
Hate	groups	
We	gather	the	extremist	groups	data	from	Southern	Poverty	Law	Center	(SPLC)	and	
map	 these	 groups	 on	 Twitter.	 We	 got	 ~3k	 user	 accounts	 containing	 such	
information	 and	 filtering	 for	 inactive	 accounts.	We	 construct	 a	 directed	 graph	G	
where	 each	 vertex	 is	 a	 user	 and	 edges	 represent	 their	 relationships	 (friends	 &	
followers).	We	 compute	 the	 page	 rank	 of	 this	 graph	G	 and	 obtain	 the	 top	 ~10k	
accounts	including	the	~3k	seed	user	accounts.	
	
	
	
	
	
	
	
	
	
	

Datasets	 Details	
[3]	 None:	53.8%;	Hate:	4.96%;	Abusive:	27.15%;	Spam:	14%;	Tweets:	~100k	

[4]	 None:	16.8%;	Hate:	5.8%;	Offensive:	77.4%;	Tweets:	~25k	

[5]	 None:	68%;	Sexism:	20%;	Racism:	11%;		Tweets:	~18k	

[6]	 None:	74%;	Harassment:	26%;	Tweets:	~21k	

Our	Dataset	 None:	58.1%;	Hate:	16.6%;	Abusive:	25.3%	Tweets:	~258k	

Model	

Interpretability	
We	 interpret	 the	 results	 by	 highlighting	 words	 in	 the	 text	 and	 constructing	 bar	
graphs	that	indicate	the	relevance	of	each	of	the	features:	textual,	social,	cultural.	

   
	
	
	
	
	
	
	
	
	
	
Tweets	containing	code	words	 like	“skypes”,	“yahoos”,	“zio”,	“zog”,	etc.	attacking	
particular	 group	 of	 people	 have	 higher	 attention	 scores	 for	 social	 and	 cultural	
context	vectors.	The	model	 is	able	to	understand	these	code	words	and	tag	them	
as	hateful	content.	


