ACHIEVING FAIRNESS IN DETERMINING MEDICAID ELIGIBILITY THROUGH FAIRGROUP CONSTRUCTION

Introduction & Motivation

e Automated ML /DL classification algorithms useful for Medicaid Eligibility Determination,
but suffer from limitation and algorithmic bias due to a variety of factors(e.g. training
data, algorithmic design)

e Fairgroup Construction to reduce unfairness in classification outcome. Fairness boosted
through pre-processing the testing data before running actual classification model.

e Model agnostic to the specifics of classifier; can be generalized to other social decision
problems such as Credit Card Approval and College Admission.

Definition of Fairness and preliminaries

Notion of Fairness: derived from legal doctrine of Disparate Impact, which calls for bal-
anced representation of different classes. Here balance is simply the ratio of smaller class to
larger class, and ranges from 0 to 1.
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Fairness Model Demonstration

Our algorithm consists of three steps:

e K-clustering to ensure similarity:;

e Intra-cluster fairgroup construction to ensure fairness;

e Actual classification to note the properties of original classifier.
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Algorithm 1: Fairness machine learning algorithm

Result: Predicted decisions of data points

Construct the feature importance vector r; for each data point;

Form K Clusters for r;’s with K-Median algorithm:;
while dpoints unmatched do
Make match for the groups by balance t;
if dno more unmatched points then
break;
else
continue matching;,

end
end
for Vfair group do
Randomly pick a point;
result=classification(random point);
Plus-fair = Fulse;
Minus-fair = False;
if Fairness Required for '+’ then
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We also notice that different features carry different levels of significance, and we can determine 1 A q
the importance of each feature in each data point from this observation. We construct the en' o ,
l Minus-fair it result = negative then

feature importance vector by computing the correlation between each numerical feature vector f b oint of th d
and the final decision vector. The feature importance vector encodes all such importance or ea;. porn of l _6 group .0
vectors, and will be used for subsequent models. preaiction result=negative,

Fig. 4: Actual Classification end
else
for each point of the group do
M Features prediction result=classification(point);
I end
end
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Fig. 6: Fairness and accuracy comparison - Income



