We show how to automatically transform any existing population-based simulator into a probabilistic program, without re-writing the simulator, enabling the simulator to be analysed for interpretable inference.

Background
- Simulators arise in a number of industrial and scientific domains, encoding sophisticated generative models.
- Probabilistic programming provides a way to perform statistical inference over simulations of events in a programmatic way.
- Thus, by design, simulators are ideal programs for probabilistic programming.
- However, within existing probabilistic programming systems (PPSs), one would have to re-implement the simulator via the PPS language specification, which is inefficient and often not feasible due to the complexity of such scientific and industrial simulators.
- Recent work by Baydin et al. demonstrated a pathway to turn a particular type of event-based simulator into a probabilistic program, without having to re-implement the simulator in the existing probabilistic programming systems (PPS).
- But, this still meant that a large class of critically important population-based simulators could not be turned into probabilistic programs and as such could not be used within a probabilistic programming framework.

What we do
- In this work, we extend that framework to encompass population-based simulators, a very large class of simulators that are used extensively across epidemiology, multi-agent and financial modeling.
- We demonstrate how we can extract interpretable outcomes from that, which can then be used by decision makers in the fight against Malaria.

References

Acknowledgements
We thank Ewan Cameron of MAP at the Big Data Institute and the OpenMalaria team at the Swiss Tropical Health Institute for their time and help. BGH is supported by the EPSRC Autonomous Intelligent Machines and Systems grant (EP/K015897/1). CSW is supported by the DRONEs (Free the Drones) project funded by the Innovation Fund Denmark and Microsoft. AGB and TR’s research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no. 617071. AGP and PH are supported by EPSRC/MURI grant EP/I019474/1 and AGP is also supported by Lawrence Berkeley National Lab.