
Crisis Sub-Events on Social Media:
A Case Study of Wildfires
Shan Jiang∗†, William Groves‡, Sam Anzaroot‡, Alejandro Jaimes‡
∗Work done during an internship at Dataminr
†Northeastern University, ‡Dataminr
sjiang@ccs.neu.edu, {wgroves, sanzaroot, ajaimes}@dataminr.com

Motivation
• Social media becoming a powerful tool during crisis events;

• A series of sub-events occurring as a major crisis unfolds;

• Understanding sub-events is crucial for crisis management.

Contribution

• A framework to identify sub-events on social media;

• A case study of sub-events after California wildfires.

Analytical Framework

• Manually curating a small set of keywords to query tweets;

• Messages reporting sub-events are (n, v) pairs, e.g., fire reported;

• Dependency parsing and traversal to extract (n, v) pairs;

• Word2vec representation of (n, v) pairs;

• Clustering similar (n, v) pairs as a sub-event;

• Labeling tweets with sub-events and running application tasks.
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Figure 1: Methods and applications.

Wildfire Data

• 4 largest wildfires in California during 2018 to 2019;

• Wildfires names, curated queries, tweet numbers shown in Table 1;

• Distribution figures fitted using kernel density estimates;

• Wildfire starting dates marked by red lines;

• Selected time periods marked by shaded areas.

Name Query Tweet Distribution

Carr Fire #carrfire OR ((#carr OR carr) AND (#fire OR fire
OR #wildfire OR wildfire))

321K

Mendocino
Fire

#ranchfire OR #riverfire OR #mendocinocom-
plexfire OR ((#mendocinolakecomplex OR
#mendocinocomplex) AND (#fire OR fire))

47K

Camp Fire #cafire OR #calfire OR ((#campfire OR #camp-
fires OR #fire OR fire OR #wildfire OR wildfire)
AND california)

1,014K

Woolsey
Fire

#woolseyfire OR #woolseyfires OR ((#woolsey
OR woolsey) AND (#fire OR fire OR #wildfire
OR wildfire))

580K

Table 1: Wildfire tweets and data statistics.

Hypothesis Testing
• Cascading network of sub-events hypothesized in previous work;
• Reconstructing the network for our analytical purposes;
• Manually mapping node to a seed (n, v) pair;
• Finding similar (n, v) pairs as sub-events;
• Visualizing sub-events as wordclouds in Figure 2-3;
• Cascading, i.e., edges, are tested using time lags.

Figure 2: Evidence from Camp Fire.
All 18 (100%) sub-events are identified
and 20 of 23 (87%) cascades are sup-
ported, including complete cascading
chains, e.g., fire induces smoke, which
causes air pollution, which later harms
health and eventually affects the health-
care system. There are 3 cascades which
are not supported, e.g., evacuation is not
after home destruction, no significant lag
between road burn and close.

Figure 3: Evidence from Carr Fire. 14
of 18 (78%) sub-events are identified
and 13 of 16 (81%) cascades, minus the
ones from or to unidentified sub-events,
are supported. We observe a high degree
of alignment between evidences from
Carr Fire and Camp Fire for both sup-
ported and unsupported cascades, e.g.,
fire induces power issue and then panic,
and evacuation does not happen after
home destruction.

Unexpected Sub-Events
• Defining “unexpectedness” by cosine similarities of (n, v) pairs;
• Filtering out sub-events that are related to the known;
• Clustering remaining (n, v) pairs;
• Examples of “unexpected” sub-events shown in Figure 4-11.

Figure 4: Contain. Figure 5: Search. Figure 6: Prayer. Figure 7: Official.

Figure 8: Law. Figure 9: Rain. Figure 10: Wind. Figure 11: Whirl.

Ongoing Work
• Qualitative and quantitive evaluation using domain experts;
• Extending methods to understand sub-events of other crises;
• Minimizing human input;
• Incorporating systematic parameter optimization;
• Building an end-to-end model to replace pipeline methods.


