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Motivation

e Social media becoming a powerful tool during crisis events;
e A series of sub-events occurring as a major crisis unfolds;

e Understanding sub-events 1s crucial for crisis management.

Contribution

e A framework to identify sub-events on social media;

e A case study of sub-events after California wildfires.

Analytical Framework

e Manually curating a small set of keywords to query tweets;

e Messages reporting sub-events are (n, v) pairs, €.g., fire reported;
e Dependency parsing and traversal to extract (n, v) pairs;

e Word2vec representation of (n, v) pairs;

e Clustering similar (n, v) pairs as a sub-event;

e Labeling tweets with sub-events and running application tasks.
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Hypothesis Testing

e Cascading network of sub-events hypothesized in previous work;
e Reconstructing the network for our analytical purposes;

e Manually mapping node to a seed (n, v) pair;

e Finding similar (n, v) pairs as sub-events;

e Visualizing sub-events as wordclouds 1n Figure 2-3;

e Cascading, 1.e., edges, are tested using time lags.
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Figure 2: Evidence from Camp Fire.
All 18 (100%) sub-events are 1dentified
and 20 of 23 (87%) cascades are sup-
ported, 1ncluding complete cascading
chains, e.g., fire induces smoke, which
causes air pollution, which later harms
health and eventually affects the health-
care system. There are 3 cascades which
are not supported, e.g., evacuation 1s not
after home destruction, no significant lag
between road burn and close.

Figure 3: Evidence from Carr Fire. 14
of 18 (78%) sub-events are i1dentified
and 13 of 16 (81%) cascades, minus the
ones from or to unidentified sub-events,
are supported. We observe a high degree
of alignment between evidences from
Carr Fire and Camp Fire for both sup-
ported and unsupported cascades, e.g.,
fire induces power 1ssue and then panic,
and evacuation does not happen after
home destruction.
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Figure 1: Methods and applications.

Wildfire Data

e 4 largest wildfires in California during 2018 to 2019;

e Wildfires names, curated queries, tweet numbers shown 1n Table 1;
e Distribution figures fitted using kernel density estimates;

e Wildfire starting dates marked by red lines;

e Selected time periods marked by shaded areas.

Name Query Tweet Distribution

Carr Fire  #carrfire OR ((#carr OR carr) AND (#fire OR fire 321K
OR #wildfire OR wildfire))

Mendocino #ranchfire OR #riverfire OR #mendocinocom- 47K

Fire plexfire OR ((#mendocinolakecomplex OR
#mendocinocomplex) AND (#fire OR fire))

Camp Fire #cafire OR #calfire OR ((#campfire OR #camp- 1,014K
fires OR #fire OR fire OR #wildfire OR wildfire)
AND california)

Woolsey #woolseyfire OR #woolseyfires OR ((#woolsey 580K

Fire OR woolsey) AND (#fire OR fire OR #wildfire

OR wildfire))

Table 1: Wildfire tweets and data statistics.

Unexpected Sub-Events

e Defining “unexpectedness” by cosine similarities of (n, v) pairs;
e Filtering out sub-events that are related to the known;
e Clustering remaining (n, v) pairs;

e Examples of “unexpected” sub-events shown in Figure 4-11.
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Ongoing Work

e Qualitative and quantitive evaluation using domain experts;
e Extending methods to understand sub-events of other crises;
e Minimizing human input;

e Incorporating systematic parameter optimization;

e Building an end-to-end model to replace pipeline methods.



