InsectUp: Crowdsourcing Insect Observations to Assess Demographic Shifts and Improve Classification

Léonard Boussioux (leobi@mit.edu), Tomás Giro-Larraz, Charles Guille-Escuret, Mehdi Cherti, Balázs Kégl

InsectUp: an Insect Identifier Mobile Application

InsectUp Motivation
Insect demography shift causing devastating consequences for agriculture and ecosystems

The Original Dataset
- Difficulties to evaluate insect demographics
- 150k labelled photos of 403 European species of insects.
- Dataset provided by the SPIPOLL, a program from the French National Museum of Natural History.

InsectUp Mission
Crowdsourcing insect observations

The Classification Algorithm

<table>
<thead>
<tr>
<th>CNN architecture</th>
<th>Top 1 Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inception v4</td>
<td>87%</td>
</tr>
<tr>
<td>ResNet152</td>
<td>84%</td>
</tr>
</tbody>
</table>

Transparent workflow using RampStudio platform

Challenges & Potential Solutions

Algorithm capable of recognizing all 1 million known insect species

- Species class balance highly variable.
- Observer bias: some species will be reported more than others.
- Few-shot learning
- Less refined classification

- Build a rigorous annotation pipeline to avoid erroneous identifications
 - Manual annotations from humans with different levels of expertise
 - High level of similarity between some species.

- Handle false observations
 - Degrades data quality and user experience
 - Use reputation score
 - Use multiple identification suggestions
 - Attract entomologists for high quality identifications
 - Moderated feed
 - Anomaly detection
 - Educate people

InsectUp Success

Left: Age and geographic distribution of InsectUp users.

Right: Active users from April to Nov. 2018 during the alpha phase.

Data Collected

45k photos uploaded during the alpha phase. Photo quality and insect species are very variable.