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Objective

X = (x0,x1, . . . ,xT )

Satellite Data

ESA Sentinel 2 Satellite

• collected at regular
temporal intervals of
2-3 days
•measurements of 13

spectral bands
• data available globalls

ŷt, pt = f (X→t)

Early Classification Model

X→t observation until t
ŷt class prediction scores
pt probability of stopping.

Classifying a
satellite time series
accurately as
early as possible

y = (ycorn, ybarley, . . . ) ∈ R13

Crop Type Labels

crop type labels
•European Common

Agricultural Policy
(CAP)
• collected yearly in

entire Europe

Method
Based on previous work (Rußwurm et al., 2019) applied to crop type mapping from
remote sensing data.
Mechanism
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ŷt

xt−1 xt

pt

Lc

θclθp
∂L
∂θcl

P (t)

Lt

∂L
∂Lc

∂L
∂P (t)

∂L
∂θp

feature extrac-
tor ht = f (X→t)
implemented as
multi-layer LSTM

probability of stop-
ping at time t

probability of not hav-
ing stopped before
P (t) = pt ·

∏t−1
τ=0 1− pτ

loss function that al-
lows gradient back-
propagation to θp and
θcl.

Loss function
composite loss function

L(x,y) =

T∑
t=0

P (t; δ→t)Lt(X→t,y)

A Loss function including accuracy and ear-
liness

Lt(X→t,y) =αLc(X→t,y)

Classification Loss

− (1− α)Re(t, ŷ
+
t )

Earliness Reward

Lc = − log(ŷ+
t )

cross entropy loss for
accurate classifications

Re(t, ŷ
+
t ) = ŷ+

t

(
1− t

T

)
reduces loss for earlier classifica-
tions 1 − t

T if the correct class ŷ+t
has been predicted
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Application
Agriculture

Early Crop Detection
• early assessment of cultivated crops
• basis for early crop yield estimation

Extraction of Crop Phenology
• extraction of vegetation specific events
•monitoring time of classification
• regional or temporal variations

Generalization
• end-to-end trainable
• applicable globally
• no region-specific expert knowledge

Dataset and Area of Interest
Hollfeld region Bavaria
• 49k field parcels
• 6 main crop types
• covering 40km by 30 km
• central Germany

Challenge: Class imbalance
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Results
Qualitative Example
Single example showing reflectance data X and predictions ŷ
along with the stopping time tstop ∼ Ber(pt).
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Losses during Training
The combined loss Lt, as well as earliness Le and accuracy
Le losses during training.
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Stopping Condition Parameterization
Stopping times throughout the training grouped by crop cate-
gory. The parameterization of early classification is learned for
different crop types at different times during training.
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Balancing Earliness and Accuracy
Evaluting the effect of the trade-off parameter α on the ac-
curacy and earliness (tstop). Runs repeated three times to
evaluated the sability of the results.

α accuracy t̄stop precision recall f1 κ

.0 .25 ± .22 .10 ± .17 .19 ± .20 .25 ± .17 .16 ± .20 .12 ± .19

.2 .81 ± .03 .40 ± .02 .70 ± .01 .74 ± .01 .71 ± .01 .71 ± .04

.4 .80 ± .09 .47 ± .03 .71 ± .02 .74 ± .01 .71 ± .02 .71 ± .10

.6 .85 ± .02 .88 ± .07 .73 ± .04 .74 ± .03 .73 ± .03 .77 ± .03

.8 .84 ± .01 .93 ± .05 .72 ± .02 .75 ± .01 .73 ± .02 .76 ± .02
1.0 .83 ± .03 1.00 ± .00 .72 ± .03 .75 ± .01 .72 ± .03 .75 ± .04

Extracting Vegetation Characteristics
Stopping time per crop category reveals characteristic varia-
tions in type of vegetation confirmed by date of harvest ( )
from local authorities.
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Data & Code
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