Remote Sensing Technology TUM Department of Civil, Geo and Environmental Engineering Technical University of Munich

Early Classification for Agricultural Monitoring from Satellite Time Series

Marc Rußwurm,¹ Romain Tavenard,² Sébastien Lefèvre,² Marco Körner¹

Objective

Satellite Data

Early Classification Model

Crop Type Labels

Results

Qualitative Example

Single example showing reflectance data X and predictions \hat{y} along with the stopping time $t_{stop} \sim Ber(p_t)$.

 $\boldsymbol{X} = (\boldsymbol{x}_0, \boldsymbol{x}_1, \dots, \boldsymbol{x}_T) \longrightarrow \hat{\boldsymbol{y}}_t, p_t = f(\boldsymbol{X}_{\rightarrow t}) \longrightarrow \boldsymbol{y} = (y_{\text{corn}}, y_{\text{barley}}, \dots) \in \mathbb{R}^{13}$

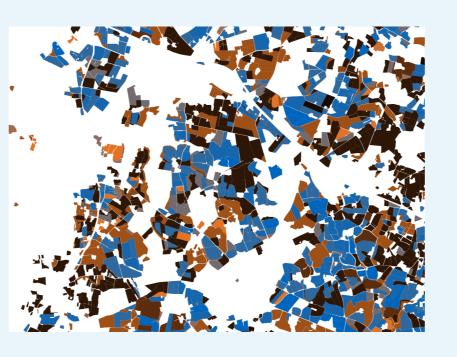


- collected at regular temporal intervals of 2-3 days
- measurements of 13 spectral bands

• data available globalls

$X_{\rightarrow t}$ observation until t $\hat{\boldsymbol{y}}_t$ class prediction scores p_t probability of stopping.

Classifying a satellite time series accurately as early as possible



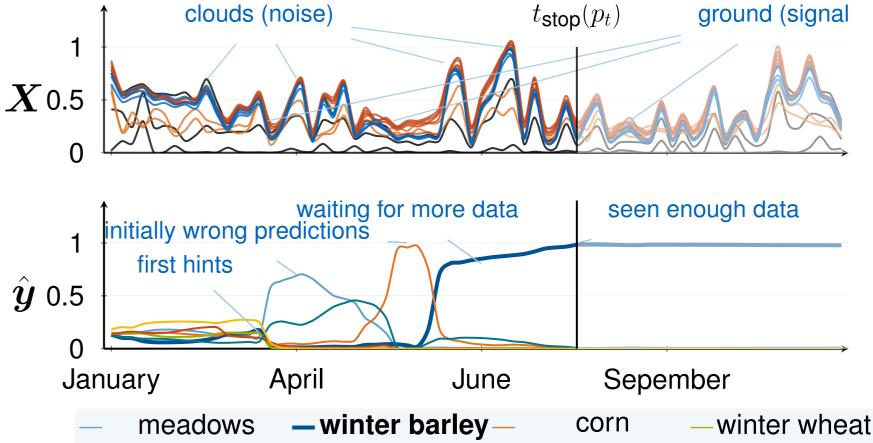
crop type labels

- European Common Agricultural Policy (CAP)
- collected yearly in entire Europe

Method

Based on previous work (Rußwurm et al., 2019) applied to crop type mapping from remote sensing data. Mechanism

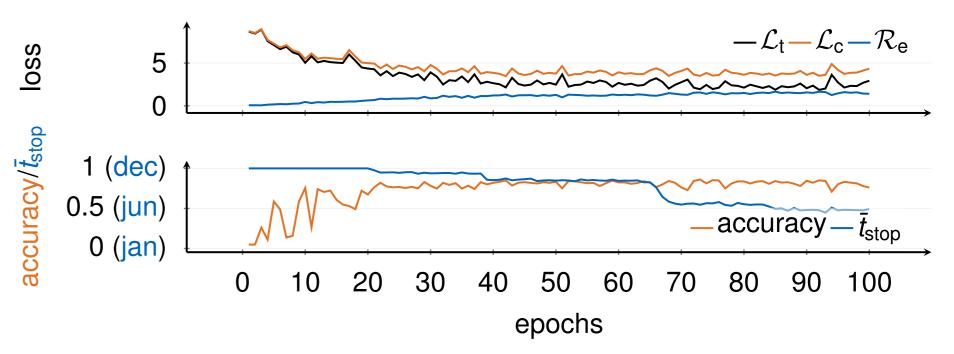
Loss function composite loss function



-winter triticale -summer barley clover

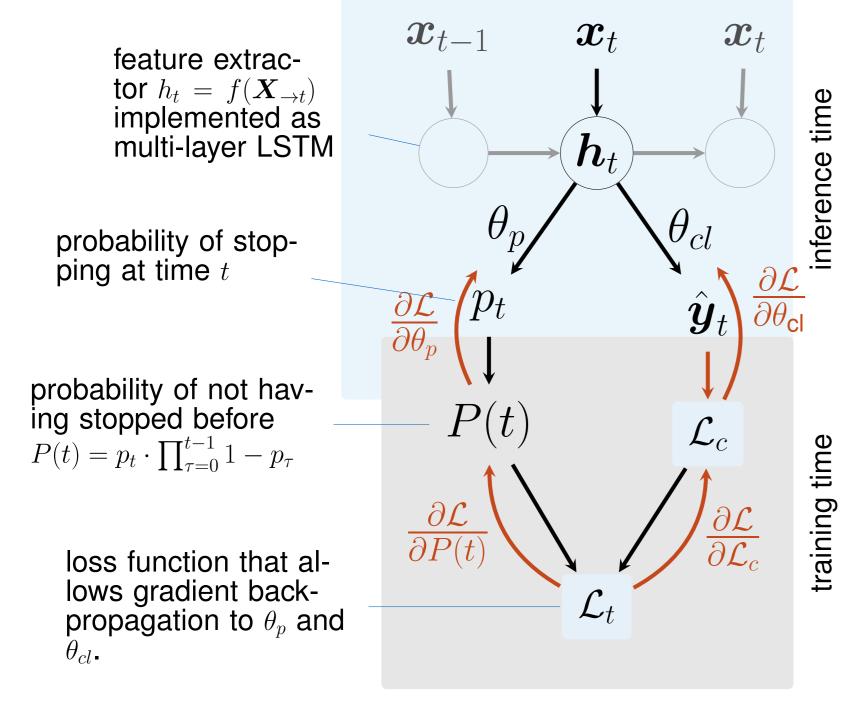
Losses during Training

The combined loss L_t , as well as earliness L_e and accuracy L_e losses during training.



Stopping Condition Parameterization

Stopping times throughout the training grouped by crop cate-

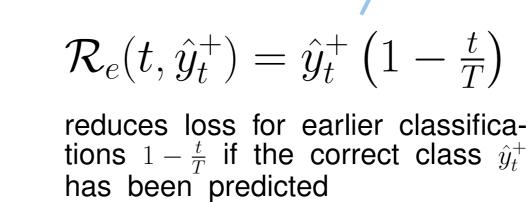


$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{t=0}^{T} P(t; \delta_{\to t}) \mathcal{L}_t(\boldsymbol{X}_{\to t}, \boldsymbol{y})$$

A Loss function including accuracy and earliness

Classification Loss Earliness Reward $\mathcal{L}_t(\boldsymbol{X}_{\to t}, \boldsymbol{y}) = \frac{\alpha \mathcal{L}_c(\boldsymbol{X}_{\to t}, \boldsymbol{y})}{\alpha \mathcal{L}_c(\boldsymbol{X}_{\to t}, \boldsymbol{y})} - (1 - \alpha) \mathcal{R}_e(t, \hat{y}_t^+)$ $\mathcal{L}_c = -\log(\hat{y}_t^+)$

cross entropy loss for accurate classifications



Rußwurm, M., Lefèvre, S., Courty, N., Emonet, R., Körner, M., and Tavenard, R. End-to-end learning for early classification of time series. arXiv preprint arXiv:1901.10681, 2019.

Application

Agriculture

Early Crop Detection

• early assessment of cultivated crops

• basis for early crop yield estimation

Extraction of Crop Phenology

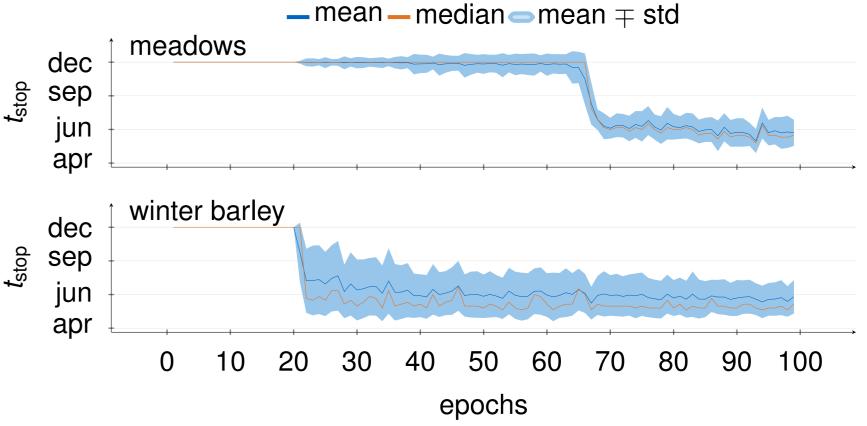
• extraction of vegetation specific events monitoring time of classification • regional or temporal variations

Dataset and Area of Interest

Hollfeld region Bavaria • 49k field parcels • 6 main crop types

• covering 40km by 30 km • central Germany

gory. The parameterization of early classification is learned for different crop types at different times during training.



Balancing Earliness and Accuracy

Evaluting the effect of the trade-off parameter α on the accuracy and earliness (t_{stop}). Runs repeated three times to evaluated the sability of the results.

α	accuracy	\overline{t}_{stop}	precision	recall	f_1	κ
.0	.25 ± .22	.10 ± .17	.19 ± .20	.25 ± .17	.16 ± .20	.12 ± .19
.2	$.81\pm.03$	$.40\pm.02$	$.70\pm.01$	$.74\pm.01$.71 ± .01	$.71\pm.04$
.4	$.80\pm.09$	$.47\pm.03$	$.71\pm.02$	$.74\pm.01$	$.71\pm.02$	$.71\pm.10$
.6	$.85\pm.02$	$.88\pm.07$	$.73\pm.04$	$.74\pm.03$	$.73\pm.03$	$.77\pm.03$
.8	$.84\pm.01$	$.93\pm.05$	$.72\pm.02$	$.75\pm.01$	$.73\pm.02$	$.76\pm.02$
1.0	$.83\pm.03$	$1.00\pm.00$	$.72\pm.03$	$.75\pm.01$	$.72\pm.03$	$.75\pm.04$

Extracting Vegetation Characteristics

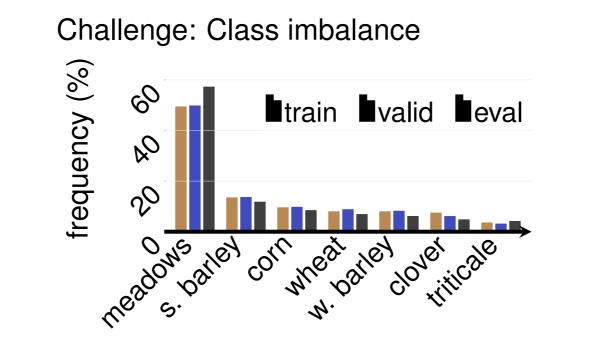
Stopping time per crop category reveals characteristic variations in type of vegetation confirmed by date of harvest (-) from local authorities.

Generalization

• end-to-end trainable

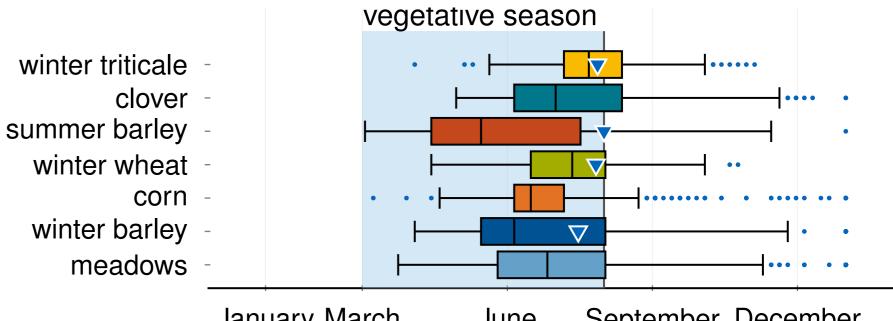
• applicable globally

• no region-specific expert knowledge



partition in train, validation, and evaluation

	1						
					1		
1.5							
	1	0	2	0 km	eval	train	valid



January March September December June stopping date *t*_{stop}

Technical University of Munich¹ TUM Department of Civil, Geo and Env. Engineering Remote Sensing Technology Arcisstr. 21, 80333 Munich, Germany

IRISA-Obelix² Université Bretagne Sud IRISA, UMR 6074 CNRS Campus de Tohannic, 56000 Vannes, France

Data & Code

https://github.com/rtavenar/early_rnn https://twitter.com/MarcCoru www.lmf.bgu.tum.de/vision

