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Introduction
• Fine particulate matter (PM2.5) kills millions annually with 

economic impacts measured in billions of dollars
• Cost-effective methods for estimating air pollution are 

needed to support pollution mitigation and health research
• Traditional geostatistical models for predicting exposures rely 

on detailed geographic information (e.g. traffic, land use) that 
are not always available

• Alternatively, this geographic information can be captured 
through satellite imagery

Methods

Results

Figure 5. Differences in predicted long-term average PM2.5 concentrations (2010-2016) using the IMAGE-PM2.5 model and the DIMAQ 
model.5,28 
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Figure 1: Locations of global PM2.5 monitoring sites grouped into 1200 geohash cells. 

Discussion

Figure 3. Gradient-weighted class activation maps (Grad-CAMs) for images correctly classified by 
the final global categorical model (using the Xception base and zoom level-13 satellite images). 
The first column is the original input image. The second through sixth columns are the Grad-
CAMs for classes 2, 4, 6, 8, and 10, respectively. Numerical values on the top-right indicate the 
predicted probability that the image belongs to the respective class. The cities are Minneapolis, 
US (C2); Kansas City, US (C4); Amsterdam, NL (C6); Tel Aviv, IL (C8); and Beijing, CN (C10).  

 

Figure 1. Measured versus predicted global PM2.5 concentrations in the test set for 10-category 
classification (A) and regression (B). The final model uses the Xception base with zoom level-13 
satellite images. 

 

0.41 0.31 0.15 0.02 0.01 0 0.04 0 0.02 0.04

0.13 0.31 0.4 0.07 0.02 0.01 0.02 0.02 0 0.02

0.09 0.26 0.38 0.15 0.03 0.04 0.01 0.01 0 0.03

0.05 0.18 0.3 0.21 0.08 0.08 0.02 0.03 0.01 0.04

0.07 0.12 0.14 0.09 0.15 0.23 0.06 0.06 0.03 0.05

0.09 0.1 0.08 0.11 0.08 0.19 0.13 0.07 0.06 0.09

0.19 0.1 0.03 0.09 0.08 0.05 0.19 0.14 0.06 0.07

0.16 0.01 0 0.01 0.07 0.01 0.23 0.21 0.18 0.12

0.01 0 0 0 0 0 0.01 0.11 0.53 0.34

0.01 0 0 0 0 0 0 0.03 0.22 0.74

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Predicted

Ac
tu
al

A

0

20

40

60

80

0 20 40 60 80
Predicted

Ac
tu
al

Region
Canada/USA

Europe

China

India

Other

B

Figure 3: Measured versus predicted PM2.5 concentrations (C1: low; C10: high) in the test set

Classification accuracy: 33.7%
One-off classification accuracy: 65.7%

Figure 4: Gradient-
weighted class 
activation maps for 
images correctly 
classified by the 
final model. 
Column 1: Original 
Column 2-6: 
GRAD-CAM for 
classes 2, 4, 6, 8, 
10, respectively. 
Numerical values 
indicate predicted 
probability of the 
image belonging to 
the respective class

Figure 5: Difference in predicted PM2.5 between the IMAGE-PM2.5 and DIMAQ models
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• 20,000 annual average measurements among 6000 global 
sites (spanning 2010-2016) were compiled from the WHO 
and grouped into ~156 x 156km geohash cells

• Zoom level 13 to 16 satellite images centred on measurement 
sites were downloaded from Google static maps

• Data were randomly split into disjoint training (80%), 
validation (10%), and test sets (10%) by geohash cells

• Categorical (10 balanced classes split evenly by deciles of 
PM2.5 distribution) and continuous models were developed

• Optimal configuration consisted of zoom level 13 images and 
an Xception base initialized with ImageNet weights

• Model performance was compared to ”gold standard” DIMAQ 
geostatistical model from the Global Burden of Disease Study

• The IMAGE-PM2.5 model offers a fast cost-effective method 
for estimating global variations in annual average PM2.5

• Model could be improved with timestamped hi-res imagery
• Satellite images could serve as a predictor for other exposures
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Figure 2: From left to right, respectively: zoom level 13 (10 x 10km) through 16 (1.5 x 1.5km)

Test set SD: 23.82 µg/m3

Regression RMSE: 13.01 µg/m3
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