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Abstract

Tuberculosis (TB) is one of the top ten causes of
death worldwide, yet in most cases it is a curable
and preventable disease. The prevalence of TB
is caused in part by non-adherence to medication,
which results in greater risk of death, reinfection
and contraction of multidrug-resistant TB. Using
data on 17,000 Indian patients provided by the
NGO Everwell, we consider the problem of pre-
dicting which patients are likely to miss doses
in the near future and optimizing interventions
by health workers to avert such treatment fail-
ures. On a technical level, we propose a means of
integrating common classes of discrete optimiza-
tion problems into the training of deep learning
or other predictive models. In the tuberculosis
domain, we find that such decision-focused learn-
ing improves the number of successful interven-
tions by approximately 15% compared to standard
machine learning approaches, demonstrating that
aligning the goals of learning and decision making
can yield substantial benefits in a socially critical
application.

1. Introduction

Tuberculosis (TB) is one of the top ten causes of death
worldwide (WHO, 2018), despite widespread and effective
treatment. One major challenge is non-adherence to med-
ication, which results in greater risk of death, reinfection
and contraction of multidrug-resistant TB (Thomas et al.,
2005). Increasingly, health workers use digital adherence
technologies (DATSs) to determine when patients have taken
their medicine (Subbaraman et al., 2018). We focus on im-
proving adherence to tuberculosis treatment by leveraging
digital adherence data, introducing new techniques at the in-
tersection of optimization and learning. DATSs allow patients
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to be “observed” consuming their medication electronically,
e.g. via two-way text messaging, video capture, electronic
pillboxes, or toll-free phone calls. Data from such devices
enables health workers to triage patients and focus their
limited resources on the highest risk patients. Preliminary
studies suggest that DATs can improve adherence in mul-
tiple disease settings (Haberer et al., 2017; Corden et al.,
2016), prompting its use and evaluation for managing TB
adherence (Garfein et al., 2015; Liu et al., 2015; 99DOTS).

We study how the wealth of longitudinal data produced by
DATs can be used to help health workers better triage TB pa-
tients and deliver interventions to boost overall adherence
of their patient cohort. The data we analyze comes from a
partnership with the nonprofit 9DOTS and the healthcare
technology company Everwell who have implemented a
DAT by which patients prove adherence through daily toll-
free calls. 99DOTS operates in India where there were an
estimated 2.7 million cases of TB in 2017 (WHO, 2018);
they shared data from one major city in Maharashtra (re-
ferred to as ”The City.”) 99DOTS enables health workers
to intervene with at-risk patients via texts, calls, or home
visits. Note that many of these patients live in low-resource
communities where each health worker manages tens to
hundreds of patients; far more than they can possibly visit
in a day. Thus, models that can identify patients at risk of
missing doses and prioritize interventions by health workers
are of paramount importance. We first propose the following
prediction task: given adherence data up to a certain time
period for patients not currently considered for intervention,
predict risk of non-adherence in the next week and develop
machine learning models. We then study a particular in-
tervention task which requires workers to balance travel
costs while predicting which patients will benefit most from
interventions.

This task, like many other real-world uses of Al, requires
a pipeline from data to decisions which involves two com-
ponents: machine learning models and optimization algo-
rithms. Our concern here is discrete optimization, which
is ubiquitous in real-world applications of artificial intel-
ligence (such as the TB domain). Typically, optimization
and learning are treated entirely separately during training.
That is, a system designer will first train a predictive model
using some standard measure of accuracy Then, the model’s
predictions are given as input to the optimization algorithm
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to produce a decision. Such two-stage approaches are ex-
tremely common across many domains. This process is
justified when the predictive model is perfect, or near-so,
since completely accurate predictions also produce the best
decisions. However, in complex learning tasks, all models
will make errors and the training process implicitly trades
off where these errors will occur. When prediction and opti-
mization are separate, this tradeoff is divorced from the goal
of the broader pipeline: to make the best decision possible.
We introduce methods which insert discrete optimization
into the loop of machine learning training, enabling end-to-
end training focused on the goal of improving interventions.
In the tuberculosis domain, such decision-focused learning
improves by about 15% over standard machine learning ap-
proaches, demonstrating the value of tailoring the learned
model to fit the decision problem at hand.

2. Previous work

Adherence tracking and prediction: Outcomes and ad-
herence research are well studied in the medical literature
(Kardas et al., 2013). Traditionally, studies have attempted
to identify demographic or behavioral factors correlated
with non-adherence so that health workers can focus in-
terventions on patients who are likely to fail. Typically
these studies gather demographic and medical statistics on
a cohort of patients, observe the cohort’s adherence and
outcomes throughout the trial, then retrospectively apply
survival (Shargie & Lindtjgrn, 2007; Kliiman & Altraja,
2010) or logistic regression (Roy et al., 2015) analysis to
determine covariates predictive of failure. Newer work has
improved classification accuracy via machine learning tech-
niques (Kalhori & Zeng, 2013; Hussain & Junejo, 2018;
Sauer et al., 2018; Mburu et al., 2018). However, the conclu-
sions connecting predictors to risk are largely the same as
in previous medical literature. While such studies have im-
proved patient screening at the time of diagnosis, they offer
little knowledge about how risk changes during treatment.
In this work, we show how a patient’s real-time adherence
data can be used to track and predict risk changes throughout
the course of their treatment.

Machine learning: There is a growing body of research
at the interface of machine learning and discrete optimiza-
tion (Vinyals et al., 2015; Bertsimas & Dunn, 2017; Khalil
et al., 2017b;a). However, previous work largely focuses
on either using discrete optimization to find an accuracy-
maximizing predictive model or using machine learning to
speed up optimization algorithms. Here, we pursue a deeper
synthesis; to our knowledge, this work is the first to train
predictive models using combinatorial optimization perfor-
mance with the goal of improving decision making. The
closest work to ours in motivation is (Donti et al., 2017),
who study task-based convex optimization. Their aim is

to optimize a convex function which depends on a learned
parameter. As in their work, we use the idea of differenti-
ating through the KKT conditions. However, their focus is
entirely on continuous problems. Our discrete setting raises
new technical challenges, highlighted below.

3. Data Description

99DOTS provides each patient with a cover for their sleeve
of pills that associates a hidden unique phone number with
each pill. As patients expose each pill, they expose the
associated phone number. Each patient is instructed to place
a toll-free call to the indicated number each day. 99DOTS
counts a dose only if the patient calls the correct number for
a given day. Due to the sensitivity of the health domain, all
data provided by our partners was fully anonymized before
we received it. The dataset contains over 2.1 million calls by
about 17,000 patients, served by 252 health centers across
The City.

Patient Details. This is the primary record for patients
who have enrolled with 99DOTS. The table includes demo-
graphic features such as weight-band, age-band, gender and
treatment center ID. Also included are treatment start and
end dates, whether treatment is completed or ongoing, and
an “adherence string” which summarizes a patient’s daily
adherence. For patients who completed treatment, a treat-
ment outcome is also assigned according to the standard
WHO definitions (WHO, 2013).

Mapping phone numbers to patients. Patients must call
from a registered phone number for a dose to be counted by
the 99DOTS system. Patients can register multiple phones,
each of which will be noted in the Phone Map table. We
filtered out phones that were registered to multiple patients
since they could not be uniquely mapped to patients. Also,
patients who had any calls from shared phones were fil-
tered out to avoid analyzing incomplete call records. This
removed < 1% of the patients from the data set.

4. Problem description

We focus on a specific optimization problem that models
the allocation of health workers to intervene with patients
who are at risk over the course of a week. The health worker
is responsible for a population of patients across different
locations, and may visit one location each day. We use
location identifiers at the level of the TB Unit since this is
the most granular identifier which is shared by the majority
of patients in our dataset. Visiting a location allows the
health worker to intervene with any of the patients at that
location. The optimization problem is to select a set of
locations to visit which maximizes the number of patients
who receive an intervention on or before the first day they
would have missed a dose. We refer to this quantity as
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the number of successful interventions; this captures the
extent to which health workers are able to intervene before
problems arise.

We now show how this optimization problem can be for-
malized as a linear program. We have a set of locations
i = 1...L and patients j = 1...IN where patient j has lo-
cation ¢;. Over days of the week ¢t = 1...7, the objective
coefficient p;; is 1 if an intervention on day ¢ with patient j
is successful and O otherwise. Our decision variable is x;;,
and takes the value 1 if the health worker visit location 7 on
day ¢ and O otherwise. With this notation, the final LP is as
follows:
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where the second constraint prevents the objective from
double-counting multiple visit to a location. We remark that
the feasible region of the LP can be shown to be equivalent
to a bipartite matching polytope, implying that the optimal
solution is always integral.

5. Machine learning approach

The machine learning task is to predict the values of the pj;,
which are unknown at the start of the week. Two sources
of data are available for each patient. First, the patient’s
adherence data over the previous work (as provided by the
99DOTS system). Second, a set of demographic features
such as weight-band, age-band, gender and treatment center
ID. We develop a combined neural network architecture
which uses an LSTM to process the adherence time series
from the previous week, and combines the hidden state
of the LSTM with the demographic features through fully
connected layer. We refer to the final model as DeepNet.
We develop two variants of DeepNet. First, one trained
using a standard approach: cross-entropy loss. Second, one
which incorporates the above LP into the training process.
Specifically, our goal is to solve the LP in each forward pass
of the training process and then differentiate through the
solution to the LP (as a function of the p;;) in the backward
pass. This allows us to use the objective value of the LP
solution with respect to the ground truth p;; as the loss
function for training. This decision-focused training method

incentivizes the machine learning model to focus specifically
what is needed to make good decisions.

More formally, let 2:(p) denote the optimal solution the LP
with respect to the predictions p. In order to train end-to-end,
we would like to compute the derivative g—i so that we can
pass gradients through the optimization problem. The opti-
mal decision z(p) must satisfy the KKT conditions, which
define a system of linear equations based on the gradients
of the objective and constraints around the optimal point. Is
is known that by applying the implicit function theorem, we
can differentiate the solution to this linear system (Gould
et al., 2016; Donti et al., 2017). In more detail, suppose that
we have an LP in standard form, maximizing ¢’ = subject
to the constraint x € X = {Az < b} for some matrix A
and vector b. Let (z, \) be pair of primal and dual variables
which satisfy the KKT conditions. Then differentiating the
conditions yields that
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By solving this system of linear equations, we can obtain
the desired term %. This approach runs into an immedi-
ate difficulty: the optimal solution to an LP may not be
differentiable (or even continuous) with respect to c. This
is because the optimal solution may “jump” to a different
vertex. Formally, the left-hand side matrix in Equation 1
becomes singular since the Hessian V¢ is always zero.
We resolve this challenge by instead solving the regularized
problem

maxclz —||z]|3 st. Az =b 2)

which introduces a penalty proportional to the squared norm
of the decision vector. This transforms the LP into a strongly
concave quadratic program (QP). The Hessian is just —2~1
(where [ is the identity matrix), which renders the solution
differentiable under mild conditions (see the supplement for
proofs!):

Theorem 1. Provided that the LP is feasible and all rows
of A are linearly independent, x(c) is differentiable with
respect to ¢ almost everywhere. If A has linearly dependent
rows, removing these rows yields an equivalent problem
which is differentiable almost everywhere. Wherever x(c) is
differentiable, it satisfies the conditions in Equation 1.

Moreover, we can control the loss that regularization can
cause on the original, linear problem:

"https://www.dropbox.com/s/
v3tcotkbognobyyz/supplement_tb_icml.pdf?dl=0
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Figure 1. Experimental results. From left to right: average missed doses averted by each method, AUC of each method, scatter plot of
predicted utility vs ground truth for the DN model, and the same scatter plot for DN-Decision.

Theorem 2. Define D = max, yex ||z —y||* and OPT to
be the optimal value for the LP. We have ¢" x(c) > OPT —
~vD.

Together, these results give us a differentiable surrogate
which still enjoys an approximation guarantee relative to
the integral problem. At test time, we simply set v = 0
to produce an integral decision. We remark that while this
paper focuses on the specific motivating domain of TB, our
techniques apply more generally to other combinatorial LPs.

6. Experimental results

We compare three models. First, a baseline model which
approximates the strategy that health workers use to priori-
tize patients in the status quo (essentially, intervening with
those who have recently missed more than some number
of doses). Specifically, we threshold the number of doses
patient j missed in the last week, setting ¢;; = 0 for all ¢ if
this value falls below the threshold 7 and c;; = 1 otherwise.
We used 7 = 1 since it performed best. This strategy is
refered to last week misses (Iw-Misses). Second, we trained
our DeepNet system (DN) directly on the true c;; as a binary
prediction task using cross-entropy loss. Third, we trained
DeepNet to predict c;; using decision-focused learning. We
refer to this model as DN-Decision. We created instances
of the decision problem by randomly partitioning patients
into groups of 100, modeling a health worker under severe
resource constraints.

Figure 1 shows results for this task. In the top row, we
see that DN and DN-Decision both outperform lw-Misses,
as expected. DN-Decision improves the number of suc-
cessful interventions by approximately 15% compared to
DN, demonstrating the value of tailoring the learned model
to a given planning problem. DN-Decision actually has
worse AUC than either DN or Iw-Misses, indicating that
typical measures of machine learning accuracy are not a
perfect proxy for utility in decision making. To investigate
what specifically distinguishes the predictions made by DN-
Decision, the bottom row of Figure 1 shows scatter plots of
the predicted utility at each location according to DN and
DN-Decision versus the true values. Visually, DN-Decision
appears better able to distinguish the high-utility outliers

which are most important to making good decisions. Quan-
titatively, DN-Decision’s predictions have worse correlation
with the ground truth overall (0.463, versus 0.519 for DN),
but better correlation on locations where the true utility is
strictly more than 1 (0.504 versus 0.409). Hence, decision-
focused training incentivizes the model to focus on making
accurate predictions specifically for locations that are likely
to be good candidates for an intervention. This demon-
strates the benefit of our flexible machine learning modeling
approach, which can use custom-defined loss functions to
automatically adapt to particular decision problems.

7. Conclusion

We present a framework for learning to make intervention
recommendations from data generated by digitial adherence
systems applied to TB care. Using patient data from In-
dia provided by the nonprofit 99DOTS, we train sequence
prediction models to forecast patient adherence and allow
health workers to better target their interventions. Further,
we develop techniques to specialize the training of such
models to particular decision problems (in particular, dis-
crete optimization problems represented as linear programs).
These techniques are applied in the context of a specific de-
cision problem that models the tradeoff between travel time
and patient risk for a resource-constrained health worker.
We show that tailoring our model for a specific intervention
via decision-focused learning can improve performance by
a further 15%. The learning approaches we present here
are general and could be leveraged to study data generated
by DATs as applied to any medication regimen. With the
growing popularity of DAT systems for TB, HIV, Diabetes,
Heart Disease, and other medications, we hope to lay the
groundwork for improved patient outcomes in healthcare
settings around the world.
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