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Abstract
Mapping the distribution of poverty in develop-
ing countries is essential for humanitarian orga-
nizations and policymakers to formulate targeted
programs and aid. However, traditional methods
for obtaining socioeconomic data can be time-
consuming, expensive, labor-intensive. Recent
studies have demonstrated the effectiveness of
combining machine learning with satellite im-
ages to estimate wealth in sub-Saharan African
countries (Xie et al., 2015; Jean et al., 2016). In
this study, we investigate the extent to which this
method can be applied in the context of the Philip-
pine archipelago to predict four different socioeco-
nomic indicators: wealth level, years of education,
access to electricity, and access to water. We also
propose a cost-effective approach that leverages a
combination of volunteered geographic informa-
tion from OpenStreetMap (OSM) and nighttime
lights satellite imagery for estimating socioeco-
nomic indicators. The best models, which incor-
porate regional indicators as predictors, explain
approximately 63% of the variation in asset-based
wealth. Our findings also indicate that models
trained on publicly available, volunteer-curated
geographic data achieve the same predictive per-
formance as that of models trained using propri-
etary satellite images.

1. Introduction
Despite best efforts in implementing poverty alleviation
programs, the Philippines still lags behind its Southeast
Asian neighbors in terms of poverty eradication, with ap-
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proximately 22 million Filipinos living below the national
poverty line (Philippine Statistics Authority PSA, 2018).
A major challenge in fighting poverty today is the lack of
reliable socioeconomic data, which is often expensive, time-
consuming, and labor-intensive to collect. Conducting on-
the-ground household surveys in the Philippines can cost up
to 1.5M USD. Such surveys are done only every 3 to 5 years
and are often aggregated to the regional or provincial level
when reported to the public (Juan-Albacea, 2009). Without
more granular and up-to-date data to guide their policies
and programs, development organizations and government
agencies risk allocating their limited resources in the wrong
areas.

In recent years, major advancements in computer vision re-
search and an increasing availability of geospatial resources
have enabled novel methods for estimating socioeconomic
indicators (Jean et al., 2016; Babenko et al., 2017; Engstrom
et al., 2017). To tackle the problem of poverty eradication,
we look towards combining machine learning with geospa-
tial information as a fast, low-cost, and scalable means of
providing granular poverty estimates. In this study, we
examine the extent to which geospatial data including night-
time lights, daytime satellite imagery, human settlement
data, and crowd-sourced information can be used to esti-
mate socioeconomic well-being in the Philippines.

To summarize, our work primarily seeks to answer the fol-
lowing questions: (1) Are satellite-based methods developed
for poverty prediction in other countries applicable within
the Philippine context? and (2) How well do predictive mod-
els trained on publicly available crowd-sourced geospatial
information compare against state-of-the-art satellite-based
methods for Philippine poverty estimation?

2. Data and Pre-processing
2.1. Demographic and Health Survey

We used the 2017 Philippine Demographic and Health Sur-
vey (DHS) as a measure of ground truth for the socioe-
conomic indicators. Conducted every 3 to 5 years, the
Philippine Statistical Authority (PSA) collects nationally
representative information on social, economic, and health-
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related outcomes across hundreds of households, which
are grouped into clusters of 2 to 44 households (Philippine
Statistics Authority PSA, 2018; Burgert et al., 2013). In
line with the Sustainable Development Goals, we focused
our analysis on a subset of survey questions and derived the
following socioeconomic indicators from the DHS dataset:

Wealth Index. Our primary measure of socioeconomic well-
being is the “wealth index”, which is computed as the first
principal component of attributes related to common asset
ownership (e.g., roof material, television, housing material)
on a per-household level. We get the mean wealth index per
cluster as it is reported in the DHS dataset and do no further
transformations.

Education completed. The DHS captures information on
the number of years of education completed by household
members over 6 years old. We aggregated this by computing
the mean years of education completed across all households
per cluster.

Access to Electricity. The DHS dataset contains informa-
tion on the number of affirmative responses to the survey
question related to access to electricity. We aggregated this
information by getting the proportion of households with
electricity access per cluster.

Access to Water. The DHS dataset contains information
on the total travel time in minutes to get to a water source.
If water source is on-site, time is set to zero. We get the
mean time to access a water source across all households
per cluster.

2.2. Nighttime Luminosity Data

The nighttime lights (NTL) data is taken from the Visible
Infrared Imaging Radiometer Suite Day/Night Band (VIIRS
DNB) for the year 2016, produced in 15 arc-second geo-
graphic grids (NOAA National Centers for Environmental
Information, 2016). The VIIRS DNB NTL data includes
a continuous luminosity level from 0 to 122 for the Philip-
pines, with 0 being the darkest pixel. By observing the
histogram of the nighttime light intensities, we assigned the
nighttime light intensity values into the following five dis-
tinct classes: low intensity (zero pixel values), moderately
low intensity (0.05-2), medium intensity (2-15), moderately
high intensity (15-30), and high intensity (30-122).

2.3. Daytime Satellite Imagery

We retrieved a number of satellite images per cluster based
on the cluster centroids reported in the DHS dataset, where
each cluster location is defined by the mean latitude and
longitude of the households, with added noise to preserve
the privacy of the households (Philippine Statistics Author-
ity PSA, 2018). Each cluster location is also labeled with a
tag that indicates whether it is within a rural or urban area.

We obtained up to 400 square tiles of satellite images within
a 5 km radius for rural areas and up to 60 square tiles within
a 2 km radius for urban areas. These tiles surround each
cluster centroid and each tile corresponds to a pixel in the
VIIRS DNB NTL dataset. Using Google Static Maps API,
we downloaded a total of 134,540 images with a zoom level
of 17, scale of 1, and pixel resolution of approximately 1.25
m. The size of each image is 400×400 pixels and matches
the land area covered by a single pixel of night time lights
data, which typically covers 0.25 km2.

2.4. OpenStreetMap Data

More and more researchers are turning to volunteer-curated
geographic information and open geospatial datasets to
study socioeconomic development, social inequalities, and
territorial conflicts (Gervasoni et al., 2018; Mahabir et al.,
2018; Grippa et al., 2018). One of the more popular
geospatial data crowd-sourcing platforms is OpenStreetMap
(OSM), which contains global volunteered geospatial data.
A recent study has found that user-generated road maps in
OSM are approximately 83% complete as of 2016, with
over 40% of countries having a fully mapped street net-
work (Barrington-Leigh & Millard-Ball, 2017). We ob-
tained OpenStreetMap (OSM) data for the Philippines from
Geofabrik, an online repository for OSM data (Geofabrik
GmbH, 2018). From this, we were able to extract extensive
information related to the number of roads, buildings, and
points of interests present within specified areas.

3. Methods
In this section, we describe the different methods used in
predicting socioeconomic well-being. All models were eval-
uated using a five-fold nested cross validation scheme.

3.1. Satellite-based Transfer Learning Model

We implemented the satellite-based deep learning approach
proposed by Xie et al. and later improved upon by Jean
et al., with the assumption that nighttime lights act as a
good proxy for economic activity (Xie et al., 2015; Jean
et al., 2016; Mellander et al., 2015). As in Head et al.,
we began by fine-tuning a convolutional neural network
(CNN) with VGG16 architecture that has been pre-trained
on the ImageNet dataset to recognize 1000 different class
labels (Krizhevsky et al., 2012; Head et al., 2017), with
the goal of learning features that are useful for poverty
prediction. We treat the problem as a classification task
with five (5) night time intensity classes: low, moderately
low, medium, moderately high, and high. We set aside 90%
of the images for training and used the remaining 10% for
the validation set. We dealt with the class imbalance by
upsampling the minority classes (high, moderately high,
and medium nighttime light intensities) and downsampling
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the low and moderately low light intensity classes to 30,000
images per class in order for all five classes to have the same
number of training examples.

Like most models pretrained on ImageNet, the VGG16
model accepts 224 × 224 pixel images; meanwhile, our
input images are 400 × 400 pixels. We proceeded to im-
plement a fully convolutional architecture as described by
Xie et al., which involves replacing the fully-connected top
layers from the VGG16 model with randomly initialized
fully convolutional top layers (Xie et al., 2015). This allows
the model to accept input images of arbitrary sizes without
losing information, unlike other techniques such as random
cropping and scaling. Next, we augmented the training set
using random horizontal mirroring, and used 50% dropout
on the convolutional layers replacing the fully connected
layers. We then began fine-tuning the full network using an
Adam optimizer with an initial learning rate of 10−6 and a
batch size of 32. We set the maximum number of epochs
to 30, decreasing the learning rate by a factor of 10 when-
ever the validation loss began to plateau. We froze most of
the layers, tuning only the last block of fully convolutional
layers. At the end of training, we were able to achieve a
72% validation accuracy and 60% validation F1 score for
the classification task.

For each image, we extract a 4,096-dimensional vector of
activations in the top layer of the CNN, which are optimized
to distinguish between different levels of night light lumi-
nosity. Each cluster has up to 400 images that we convert to
feature vectors of learned representations; these feature vec-
tors are then averaged into a single vector. Finally, we used
these cluster-level feature vectors as input to a secondary
regression model to predict the socioeconomic indicators.
As in previous studies (Jean et al., 2016; Head et al., 2017),
we used a ridge regression model to learn the mapping from
cluster-level feature vectors to socioeconomic indicators.

3.2. OpenStreetMap Model

For each cluster, we extracted three types of OSM features,
namely roads, buildings, and points of interest (POIs). These
OSM features were extracted within a 5 km radius for ru-
ral areas and 2 km radius for urban areas, with each area
centered on the cluster locations. We identified five types
of roads in the dataset: primary, trunk, paved, unpaved, and
intersection. In engineering road features, we followed the
pre-processing technique described by Zhao and Kusumapu-
tri, i.e., for each type of road, we calculated the distance to
the closest road, total number of roads, and total road length
per cluster (Zhao & Kusumaputri, 2016).

We also identified six different types of buildings: residen-
tial, damaged, commercial, industrial, education, health.
For each type, we calculated the total number of buildings,
the total area of buildings, the mean area of buildings, and

the proportion of the cluster area occupied by the buildings.
Finally, we identified over 100 different points of interests;
for each cluster, we obtained the total number of each POI
within a proximity of the area, e.g., number of banks, bars,
cinemas, colleges, hotels, parks, etc.

We compared the performances of random forest regres-
sion models trained on the different types of OSM features,
both separately and combined, for predicting socioeconomic
well-being. Furthermore, we also conducted a series of ex-
periments to determine the predictive performance of mod-
els trained using multiple data sources, with the hypothesis
that using features from mixed data sources will bolster
model performance. Specifically, we trained random forest
regression models using a combination of OSM data and
nighttime lights-derived features as input. Nighttime light
features consist of summary statistics and histogram-based
features, including the mean, median, maximum, minimum,
covariance, skewness, and kurtosis, of the nightlight lumi-
nosity pixels within each cluster.

To our knowledge, this is the first paper to study multi-
dimensional poverty prediction using a combination of
crowd-sourced geospatial data and satellite data in the
unique context of a developing nation in Southeast Asia.

4. Results and Discussion
4.1. Poverty Prediction using Satellite Imagery and

Transfer Learning

Past studies have published results on using deep learning
methods for predicting wealth in sub-Saharan African coun-
tries (Jean et al., 2016) as well as non-African countries
(Head et al., 2017). Predictive models achieved r-squared
results ranging from 0.51 to 0.75 (Haiti: 0.51; Malawi:
0.55; Tanzania: 0.57; Nepal: 0.64 Nigeria: 0.68; Uganda:
0.69; Rwanda: 0.75). In this study, we tested how well
the satellite-based deep learning approach performs in the
Philippine setting.

Note that the Philippines, being an archipelago that consists
of over 7,000 islands, required additional pre-processing
steps in order to reduce noise in the dataset. Specifically, we
removed satellite images with centroids located in bodies of
water as well as images containing no human settlements
using the High Resolution Settlement Layer (HRSL) de-
veloped by Facebook Research (Tiecke et al., 2017); by
doing so we were able to see a notable rise in the r-squared
score from 0.56 to 0.59 for wealth prediction. By increas-
ing the number of nighttime light bins from the standard
3 to 5 and incorporating binary regional indicators as pre-
dictors, we were able to further improve the wealth index
r-squared score to 0.63. As proof of concept, we show in
Figure 1 a reconstruction of provincial-level poverty maps
by aggregating cluster-level wealth estimates.
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(a) Ground-truth Wealth In-
dex

(b) Predicted Wealth Index

Figure 1. Ground-truth wealth indices and cross-validated Philip-
pine poverty predictions using the satellite-based transfer learning
model aggregated to the provincial level.

Our findings also indicate that the method does not general-
ize for other socioeconomic indicators with the same level
of accuracy as wealth in terms of r-squared (education: 0.47,
access to electricity: 0.27, access to water: 0.10). We note
that these results are consistent with the conclusions reached
in Head et al., which states that high model performance
cannot be expected when there is no clear relationship be-
tween the development indicator and nighttime lights (Head
et al., 2017).

4.1.1. VISUALIZING NIGHTTIME LIGHT
CLASSIFICATION MODEL

To visualize the nighttime light classification model, we
generate class saliency maps based on a given image and
class (Simonyan et al., 2013). We see in Figure 2 that the
model identifies pixels related to roads and buildings as
important for classifying medium to high nighttime light
intensity; whereas, pixels related to trees and crops are given
more weight when predicting low nighttime light intensity
classes.

4.2. Poverty Prediction using Crowd-sourced
Geospatial Information

We trained separate random forest regression models for
each type of OSM feature (road, building, and POI). We
found that using roads, buildings, or points of interests alone
already explain 49-55% of the variance, with roads being the
best predictor (R2 : 0.55). Training a model using a combi-
nation of all three types of OSM features results in a higher
r-squared (0.59). Furthermore, by combining OSM features
with nighttime lights data and binary regional indicators, we
were able to obtain an r-squared of 0.63 for wealth predic-
tion. The r-squared results for education, electricity access,

(a) Low Nighttime Light Intensity
Class

(b) Medium Nighttime Light In-
tensity Class

(c) Moderately High Nighttime
Light Intensity Class

Figure 2. Class saliency maps for test satellite images in the night-
time light classification task. Maps were generated using a single
back-propagation pass through the trained CNN.

water access are 0.49, 0.36, and 0.09, respectively. Since
our poverty prediction approach was optimized for predict-
ing asset-based wealth, a more indicator-specific feature
engineering and feature selection process may likely bolster
performance.

We find that the performance of the the OSM-nightlights hy-
brid model (R2: 0.63) compares similarly with the results of
state-of-the-art satellite-based transfer learning model (R2:
0.63). However, unlike satellite images from Google Static
Maps which are proprietary and limited by licensing terms,
both OSM and NTL data are publicly available and freely
redistributable, making them an inexpensive alternative to
daytime satellite images, which costs roughly 3,000 USD to
acquire in order to generate granular poverty maps for the
entire Philippines.

5. Conclusions
In this study, we implemented the satellite-based deep learn-
ing approach described by Xie et al. and Jean et al. in the
Philippine setting (Xie et al., 2015; Jean et al., 2016). Our
results confirm the applicability of the methodology, with
the best model achieving an r-squared of 0.63 for estimating
asset-based wealth. Moreover, this study demonstrates that
the method cannot be trivially applied without taking into
account the unique geography of the Philippine archipelago.



Mapping Poverty in the Philippines Using Machine Learning, Satellite Imagery, and Crowd-sourced Geospatial Information

We also proposed an alternative cost-effective approach
to poverty prediction that uses free and publicly available
crowd-sourced geospatial information. Our findings indi-
cate that a model trained on a combination of OSM and
NTL-derived features also achieves an R2 of 0.63. We con-
clude that both satellite images and volunteered geographic
information are valuable tools for high resolution, real-time
poverty mapping. Efforts in poverty mapping have great
potential to help governments and humanitarian organiza-
tions better understand the spatial distribution of poverty
and implement more evidence-based targeted interventions
in developing countries.
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