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Abstract
Effective complements to human judgment, arti-
ficial intelligence techniques have started to aid
human decisions in complicated social problems
across the world. In the context of United States
for instance, automated ML/DL classification
models offer complements to human decisions in
determining Medicaid eligibility. However, given
the limitations in ML/DL model design, these
algorithms may fail to leverage various factors
for decision making, resulting in improper deci-
sions that allocate resources to individuals who
may not be in the most need. In view of such
an issue, we propose in this paper the method of
fairgroup construction, based on the legal doc-
trine of disparate impact, to improve the fairness
of regressive classifiers. Experiments on Ameri-
can Community Survey dataset demonstrate that
our method could be easily adapted to a variety
of regressive classification models to boost their
fairness in deciding Medicaid Eligibility, while
maintaining high levels of classification accuracy.

1. Introduction
As defined by the United Nations Sustainable Development
Goals, social decision problems in equality, fairness, and
sustainability are top priorities for developed and develop-
ing nations across the world. In particular, proper allocation
of health and medical resources are vital for the well-being
of citizens across different countries. While the majority
of endeavors in previous work centered on the developing
world, one cannot ignore the related issues in developed
countries. According to the American Community Survey
(Bureau), millions of American households are regularly
receiving governmental assistance in receiving Medicaid, a
compensation scheme designated for low-income individu-
als to receive proper reimbursement for necessary medical
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treatment. It is noted in the same dataset that over 16 million
households in America are living ”below poverty level”, yet
a substantial amount of poor households are not yet receiv-
ing Medicaid. On the other hand, out of the households that
are receiving Medicaid, a highly non-trivial amount - around
56% - of these households do not live under poverty. Such
great disparity behooves the researchers to introduce a com-
plementary decision maker that better takes various factors
of the problem into consideration, and recent advancements
in Machine Learning and Deep Learning algorithms have of-
fered objective insights into these problems (Morse, 2018).

However, given the limitations of ML/DL algorithms, the
issue of fairness has also been the focus for a lot of current
machine learning research. Taking into consideration as-
pects of computational actions and socioeconomic context,
previous researchers have focused on two subcategories of
fairness as benchmarks - outcome fairness and process fair-
ness. Given the nature of most social welfare programs,
which are designed to maximize the interests of individuals
and households with low socioeconomic status, outcome
fairness is often more important than process fairness.

Moreover, some factors are more important than others
when discussing fairness. In the context of Medicaid el-
igibility, for instance, it is important to include as many
individuals living under poverty into the program as possi-
ble, while minimizing the number of individuals that do not
need such assistance so as to allow for the optimal allocation
of the finite monetary and health resources.

Thus, given such considerations, we introduce in this pa-
per a novel method for regressive classification algorithm
to more fairly distribute Medicaid resources among indi-
viduals. Given an agnostic classifier which might produce
biased classification results, we construct fairgroups in the
testing data set, and proceed to classify the entire testing set
by first classifying representatives of fairgroups and then
propagating the decision to other data points. Here, the
notion of fairness follows that of disparate impact (Feldman
et al., 2015), which calls for similar levels of representation
for all the groups of people in different decision outcome
classes. Our contributions in this work can be summarized
as follows:
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1. We introduce a method to help regressive classifiers
to better allocate Medicaid resources by constructing
fairgroups, and achieves outcome fairness in the Med-
icaid Decision Problem with respect to the features that
we hope to impose fairness on.

2. Our algorithm also takes into consideration other fea-
tures not involved in defining fairness while making
decisions on fairness, so that individuals with similar
features will be classified in similar ways.

3. The method to achieve fairness in our paper is easily
adaptable to other decision making procedures, such as
judicial verdicts, acceptance to educational programs
and approval of credit card applications.

2. Related Work
Previous work on fairness in machine learning can be largely
divided into two groups. The first group has centered on the
mathematical definition and existence of fairness (Feldman
et al., 2015; Zafar et al., 2017; Chierichetti et al., 2017).
Along this track, alternative measures such as statistical par-
ity, disparate impact, and individual fairness (Chierichetti
et al., 2017) have been produced. Additionally, Grgic-Hlaca
et. al. (2016) covers common notions of fairness and intro-
duces methods of measuring fairness such as feature-apriori
fairness, feature-accuracy fairness, and feature-disparity fair-
ness. (Kleinberg et al., 2016) suggested that although it’s
not possible to achieve some desired properties of fairness at
the same time, including ”protected” features in algorithms
would increase the equity and efficiency of machine learning
models.

The second group has centered on algorithms to achieve
fairness. Along the route of disparate impact, (Feldman
et al., 2015) has described algorithms to spot the presence
of disparate impact through Support Vector Machine, while
(Chierichetti et al., 2017) applied the notion of disparate
impact to design an algorithm that achieves balance in un-
supervised clustering algorithms. (Chierichetti et al., 2017)
also introduces the notion of protected and unprotected fea-
tures, which we have used in our paper.

3. Model
In this section we present a novel strategy called fair-
grouping to achieve fairness in classification results. This
strategy adopts the notion of fairness as related to disparate
impact (Feldman et al., 2015), where practices based on
neutral rules and laws may still more adversely affect indi-
viduals with one protected feature than those without.

3.1. Preliminaries

We first define the terminology to be used in subsequent
description. A protected feature is a feature that carries
special importance and is of priority when making relevant
decisions. An unprotected feature, on the other hand, is
of relative minor importance in decision making. Since
the problem in our paper primarily focuses on discrete label
classification with discrete features, we assume, without loss
of generality and for sake of simplicity, that the protected
traits are binary and that the classification label class is also
binary. Given a protected feature A along with the dataset,
the balance B of the dataset with respect to A is defined as

Bal(A) = min{#{A = 0}
#{A = 1}

,
#{A = 1}
#{A = 0}

} ∈ [0, 1],

where Bal(A) = 0 refers to the case of all data points
having the same feature value of A, and Bal(A) = 1 refers
to the case where #{A = 0} = #{A = 1}. A dataset is
α-fair with respect to feature A if the balance of A does
not go below a certain number α ∈ [0, 1]. In other words, a
dataset is α-disparate with respect to A if the groups with 2
different values in A have a bounded and relative balanced
numerical ratio between 1

α and α. Following the doctrine of
disparate impact as stated in (Feldman et al., 2015), we say
that a classification is (α, i)-fair if the group corresponding
to label i in the classification class L = {+,−} is α-fair,
meaning that the protected feature is fairly represented with
balance at least α in group i.

3.2. Fair-group construction

We provide in this section the details of the algorithms we
will use to achieve fairness in classification. Assume that
we already have a classifier C which yields predictions
for data points and might not yield α-fair classification
results. Overall, our algorithm constructs fair-groups from
testing data, and conducts classification on the data points
with C while taking the properties of the fairgroups into
consideration.

The sections below provide more details of our method.

3.2.1. CORRELATION COMPUTATION

Most of the social decision problems involve different fea-
tures of varying degrees of relevance and importance to the
goal. To achieve this goal, we compute the correlation coef-
ficient between feature Xi and the outcome Y to determine
the contribution of each feature to the final classification
outcome:

Corr(Xi, Y ) =
E[XiY ]− E[Xi]E[Y ]√

V ar(Xi)V ar(Y )
.

We then rank all the features by an increasing order of the
absolute values of correlation coefficients, because higher
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correlation values indicate greater statistical significance in
either positive or negative directions. Then, we assign to
each feature Xi a weight wi which is equal to the rank by
increasing values of the correlation coefficients. The weight
wi reflects the significance of feature Xi in the classifier.

After constructing the relative weight wi of each feature
Xi from the correlation coefficients, we examine the actual
values of Xi for each data point j, here denoted by xij . If
a feature Xi is positively correlated with Y , then we rank
all data by the decreasing order of the corresponding xij’s
of the feature Xi, and define rij as the rank of xij in the set
of all values of Xi’s. Alternatively, if a feature has negative
correlation, the the data is ranked in increasing order of xij ,
and rij’s are defined accordingly. Intuitively, the rank rij’s
show how much influence each feature Xi in data point j
has to the final classification prediction. These ranks are
constructed in a way to make sure that the data points with
higher values of Xi are given enough consideration, since
higher feature values in socialogical datasets are often likely
to correspond to special cases requiring extra attention.

Finally, for each attribute Xi in corresponding to data point
j, we define r′ij = wirij as the feature importance index,
and define r′j as the feature importance vector correspond-
ing to data point j. The feature importance vector reveals
information about the relative importance of data point j,
and such information will be used to construct fairgroups
for subsequent fair classification.

3.2.2. FAIRGROUP CONSTRUCTION

With each data point now represented in the form of fea-
ture importance vectors, we now examine how close these
data points are in terms of the influence each data point
might exert to the final classification outcome, and how data
points with similar features can be grouped together for
easier analysis. To achieve these goals, we define a suit-
able distance between two vectors and consider a clustering
problem where similar data points are grouped together.

Notice that each of the entries in the feature importance
vectors are integers corresponding to different rankings, and
that closer ranks imply similarity in one feature. Thus,
we make use of the Manhattan-L1 distance to describe the
distance between feature importance vectors r′p, r

′
q:

d(r′p, r
′
q) =

N∑
i=1

|r′ip − r′iq| =
N∑
i=1

wi|rip − riq|,

Here N refers to the number of unprotected features.

Afterwards, we consider a k-median cluster algorithm to
divide the entire dataset into k groups, each containing
points with similar feature values. Within each cluster, we
look at the protected features. Without loss of generality, we
assume that the protected feature is binary, and that our goal

is to maintain the balance of the protected feature A does
not go below a certain threshold t. Since this requirement
implies that the ratio between #{A = 0} and #{A = 1}
falls between t and 1

t , we match as many A = 0 and A = 1
data points as possible on condition that the ratio between
#{A = 0} and #{A = 1} in each match falls between t
and 1/t. A set consisting of data points in such matches is
denoted as a fairgroup.

3.2.3. CLASSIFICATION WITH RESPECT TO EACH
FAIRGROUP

For each fair-group we have thus constructed, we randomly
pick a point to be classified byC. If the point is labeled as +,
we apply the same label to all other data points in the group.
Alternatively, if the point is labeled as −, we need to take
into consideration the properties of the protected feature to
determine whether other data points in the same fair-group
will be given the same label. For instance, in the case of
Food Stamp distribution, protected features such as poverty
should be treated as a protected feature only in the positive
label class, because our primary goal is to ensure that people
receiving food stamps are mainly composed of people living
under the poverty threshold. On the other hand, for decision
problems that favor similar representation of one feature in
different label classes, we need to include the feature in both
positive and negative classes. While determining admission
eligibility for admission into selective schools, for instance,
it is important that the odds of being admitted and rejected
are roughly the same across different demographic groups
to ensure equality.

Moreover, to reduce the negative effect of potential mis-
classification as much as possible, we construct as many
fairgroups as possible by first expressing t and 1

t as ratios
p
q and q

p , where p, q are co-prime integers. Starting from
#{A=0}
#{A=1} , we iteratively match p data points where A = 0

with q data points where A = 1(or q data points where
A = 0 with p data points where A = 1) depending on
whether p

q or q
p is smaller than and closer to the ratio of

unmatched #{A=0}
#{A=1} . These matched p+ q points will form

a fairgroup, and corresponding numbers of A = 0, A = 1
points will be moved from the unmatched point set. We
repeat the procedure until all the points are matched or un-
matchable.This procedure ensures that we create maximal
numbers of fairgroups, so that even when one fairgroup is
misclassified due to the misclassification of the randomly
drawn point, the effects on the overall fairness and consis-
tency can be minimal.
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4. Experiments
4.1. Dataset

To conduct experiments using the model explained above,
we use the United States Census American Community Sur-
vey data. Consisting over 2 million entries, the individual
level microdata displays important features, including status
of receiving Medicaid for a specific household.

4.1.1. PROTECTED FEATURES

The feature importance scores have been calculated using
the correlation formula in section 3.2 with respect to the
training data. Other variables include disability, number of
persons in a household, poverty status, locations, etc. The
numerical values of these features are listed in table 1. For
this experiment, we have selected household income and
poverty status as protected variables because they have
the highest importance of the model. To make household
income an indicator variable, we have set an experimental
threshold of $20000, and define those households earning
below the threshold as households to be protected.

FEATURE FEATURE IMPORTANCE

AGE 0.0783
DIVISION 0.00532
REGION 0.00132
STATE 0.00197
GENDER 0.00215
NUMBER OF CHILDREN 0.00306
HEARING DIFFICULTY 0.0121
VISION DIFFICULTY 0.0121
AMBULATORY DIFFICULTY 0.0121
SELF-CARE DIFFICULTY 0.0121

CLASS OF WORKERS 0.127
HOUSEHOLD INCOME 0.398
INTEREST INCOME 0.111
RACE 0.00587
POVERTY STATUS 0.1747

Table 1. Feature importance of Medicaid Dataset

4.1.2. TARGET VARIABLE

Here in our experiments, the target variable is the feature
which indicates whether a single individual has finally re-
ceived medicaid or not. This is a binary feature with two
options ’yes’ and ’no’.

4.2. Results

We have carried out two sets of experiments to show that
our algorithm is able to improve the fairness in the predic-
tive results, as compared to pure regressive classifiers such
as logistic regression. By the description of our method,
we cluster all household data points into 5 clusters by K-
median clustering(Zhu & Shi, 2015). In each cluster, we

maintain the same ratio for poverty and non-poverty house-
holds by setting the balance as 8

2 = 4
1 between poverty and

non-poverty households, so as to impose a 80% poverty
percentage among the people receiving MedicAid.

Table 2 and 3 list the experimental results for different re-
gressive classifiers when the protected features are house-
hold income and poverty status respectively. We have
experimented on Linear Regression, Logistic Regression
and Support Vector Machine, three of the most representa-
tive regression models, to demonstrate the effectiveness of
our method. We notice that for all three models, our fair-
group construction effectively boosts the level of protected
features in fairness, increasing the proportion of poverty by
15 to 20 %. At the same time, the classification accuracy of
the respective models remains very high and comparable to
the original models. This indicates that the clustering step in
our algorithm preserves the similarity between data points
in classification.

METHOD % OF POVERTY ACCURACY

LOGISTIC REGRESSION 67.4 92.6
LINEAR REGRESSION 65.3 90.2
SVM 68.7 91.5
LOGISTIC + FAIRGROUP 84.3 89.5
LINEAR RGRESSION + FAIRGROUP 82.7 88.1
SVM + FAIRGROUP 83.1 88.3

Table 2. Experiment results on Medicaid with Household Income
as Protected Feature

METHOD % OF POVERTY ACCURACY

LOGISTIC REGRESSION 67.4 92.6
LINEAR REGRESSION 65.3 90.2
SVM 68.7 91.5
LOGISTIC + FAIRGROUP 84.7 89.3
LINEAR RGRESSION + FAIRGROUP 83.4 86.9
SVM + FAIRGROUP 83.6 88.9

Table 3. Experimental results on Medicaid with Poverty Level as
Protected Feature

5. Conclusion
In this work we present a novel approach to solve the prob-
lem of Medicaid Eligibility Determination through classi-
fiers that achieve fairness in outcome. To achieve our goal,
we propose the strategy of fair-group construction, to pro-
mote representation of households in poverty in the group of
people receiving Medicaid. Experiments on the US Census
individual level microdata yields results that are more con-
sistent among samples with similar attributes. As a part of
our future work. we hope to apply our method to address the
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current social problems related to inequality and inequity in
both the developed and developing world.
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