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Abstract

The built environment has been postulated to have
an impact on neighborhood crime rates; however,
measures of the built environment can be subjec-
tive and differ across studies, leading to varying
observations on its association with crime rates.
We illustrate an approach to quantify the impact
of the built environment on neighborhood crime
rates from high-resolution satellite imagery. We
apply convolutional neural networks to 150,000
satellite images for three United States cities to
construct an indicator of the built environment.
We then assess the association between the built
environment indicator, socio-demographic factors
and neighborhood crime rates. Our study sug-
gests that the built environment may be a stronger
predictor of neighborhood crime rates than socioe-
conomic and demographic factors. Identification
of specific features that are linked to higher crime
rates can lead to structural interventions shown to
reduce crime incidence in urban settings.

1. Introduction

Aspects of the built environment such as, building design,
street layouts, land use, and environmental disrepair and des-
olation, have been associated with crime incidence (Taylor
& Harrell, 1996). However, different built environment char-
acteristics influence particular types of crimes and may work
through different mechanisms for crime inducement. For
example, the presence of high schools, public parks, vacant
lots or buildings can invite gang-related crimes (Loukaitou-
Sideris et al., 2001; Spelman, 1993). Neighborhood crime
has also been associated with structural aspects of the envi-
ronment linked to the degree of accessibility, and the ease
of entry and exit (Greenberg & Rohe, 1984). In contrast,
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Figure 1. Distribution of crimes per 1,000 persons in census tracts
of three metropolitan cities (Los Angeles, St. Louis and Chicago)
in the US. As shown in A and B, only a small proportion of census
tracts are classified as high crime regions. The boxplots in C show
variation in personal and property crime rates at the level of census
tracts.

structural changes in urban neighborhoods have been as-
sociated with a reduction in crime rates. For example, a
study conducted in London observed that improving light-
ing in urban streets led to decreases in crime and increases
in pedestrian street use after dark (Painter, 1996). In another
community intervention in Sarasota, Florida, improvements
in city lighting, landscaping, the addition of balconies or
porches and residential units to commercial areas combined
with new police initiatives for drug dealing and prostitution
led to decreases in personal and property crime (Carter et al.,
2003).

It is easy to visually identify environmental attributes, how-
ever, quantifying the density of these attributes across dif-
ferent geographic regions, populations and over time can



be cumbersome. Studies linking neighborhood crime to
features of the physical environment have mostly been con-
ducted using costly and time-consuming onsite visits to
count relevant attributes (e.g., the number of liquor stores,
vacant lots, and ratings of the level of graffiti or liter in
the vicinity of interest) or neighborhood surveys to assess
participant perceptions of their neighborhood. The resulting
data can therefore be subjective since it relies upon partic-
ipant or researcher perceptions, and assessment tools that
vary across studies. Furthermore, sample sizes for most
neighborhood studies tend to be small due to the burden of
data collection.

Here, we demonstrate a scalable approach that combines a
convolutional neural network (CNN) and satellite imagery
to infer characteristics of the built environment to assess
the degree to which the built environment can be associated
with variations in crime rates. We use the pretrained CNN as
a fixed feature extractor, aggregate features for each census
tract and train a regression model using those features to
predict the annual crime rate in all census tracts. We apply
our method to census tracts in three cities (Chicago, Illinois;
St. Louis, Missouri; and Los Angeles, California) with
high crime rates and available geo-referenced crime data.
In contrast to existing methods, our approach is low cost,
and can produce fine-grained geographical estimates using
publicly available data and software.

2. Related Work

High-resolution satellite imagery are rich and comprehen-
sive repositories of information for a variety of domains,
ranging from crop health to the economy (Nsoesie et al.,
2015; Karnieli et al., 2008; Gautam et al., 2004; Verbesselt
et al., 2012). Recent studies have shown that the application
of deep neural networks to satellite images can enable char-
acterization of the physical environment to study poverty,
obesity, the economy and the demographic makeup of the
United States (Gebru et al., 2017; Jean et al., 2016; Maha-
rana & Nsoesie, 2018).

In this rapidly evolving field, there have been no studies
focused on the prediction of population level crime rates
using data from satellite images. A related study adopted
the Broken Windows theory (Wilson & Kelling, 2003) to
identify city landscape features from Google Street View
image for crime prediction using support vector regression
algorithm (Arietta et al., 2014). This approach was tested
for several US cities and achieved more than seventy percent
accuracy in binary classification of areas with low and high
rates of violent crime. However, Google Street View is only
available for select regions, thereby limiting reproducibil-
ity. Another study used multi-modal features to classify
crime hot-spots in Chicago (Bogomolov et al., 2014). In
contrast, our approach is the first comprehensive assessment

of the association between the built environment and overall
numeric crime rates at the neighborhood level.

3. Methods

Our modeling approach involves three steps: (1) extrac-
tion of geocoded crime data from police websites and cen-
sus tract sociodemographic variables from the American
Community Survey (ACS), (2) collection and processing
of satellite imagery data, and (3) regression modeling to
assess association between crime, the built environment and
sociodemographic factors.

3.1. Crime and Sociodemographic Data

We obtained geo-referenced time-stamped 2016 crime
records (includes both serious crimes and misdemeanors)
provided by law enforcement departments for each of the
cities.123 The number of crimes were aggregated to the
census tracts in accordance with 2010 Census boundaries.
As appropriate, some crimes were further separated into
categories of personal (e.g., assault, battery, homicide) and
property (e.g., robbery, property destruction) crime. We
also obtained 2014 5-year estimates of socioeconomic and
population characteristics from the ACS. The number of
crimes for each census tract was divided by the ACS popu-
lation estimates to arrive at the number of crime incidents
per 1,000 persons (hereafter referred to as crime rates).

3.2. Satellite Image Processing

Next, we collected nearly 150,000 satellite images span-
ning each census tract from Google Static Maps API at
a zoom level of 18. These images were unlabeled. To
overcome the challenge of working with unlabeled data,
we used a transfer learning framework (Jean et al., 2016).
We used the VGG-F network which has been pre-trained
on the ImageNet database; a dataset containing approxi-
mately 14 million images to differentiate between 1,000
object categories (Simonyan & Zisserman, 2015; Deng et al.,
2009). We fine-tuned the network to our specific problem
of crime prediction by training the model on data comprised
of images from census tracts with high and low crime rates
defined as the top and lower fifteen percent of crimes rates.
The fine-tuned VGG-F network achieved approximately
80% classification accuracy on the validation set after 30
epochs. The updated model identified features pertinent to
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Figure 2. Predictions of crime rates per 1,000 persons across census tracts in Los Angeles, California. (A) the reported crime rates, (B)
predictions for a single model fitted to all crime levels, and (C) combined predictions from the separate model without outliers and model
for outliers (i.e., census tracts with highest crime rates). The gray shaded regions are census tracts with zero population or no reported
crimes.

describing neighborhood structures, which could be useful
for making meaningful associations between crime rates and
the environment. A total of 4,096 features were extracted
from the penultimate layer of the neural network.

3.3. Statistical Analysis

We fitted a regression model to assess the association be-
tween the extracted features and neighborhood crime rates.
To reduce the dimensionality of the feature matrix and iden-
tify relevant predictive features, we used elastic net, which
is both a regularization and variable selection technique
(Friedman et al., 2001). Our rigorous model fitting ap-
proach included a five-fold (for Chicago and Los Angeles)
and three-fold (for St. Louis due to small sample size) cross
validation process. For each of the three cities, we fitted
individual models to predict (predict here refers to out-of-
sample predictions, not forecasting of future events) crime
rates in each city solely using the features extracted from
satellite images. We also assessed how well our approach
predicts personal and property crimes. Next, we compared
our findings to predictions solely based on socioeconomic
and demographic variables, which have been extensively
studied and associated with neighborhood crime rates. We
developed regression models to predict crime rates based
on variables related to unemployment, income, racial demo-
graphics, and education (Bogomolov et al., 2014; Raphael
& Winter-Ebmer, 2001; Patterson, 1991; Ehrlich, 1975; Fa-
jnzylber et al., 2002). Model estimates were evaluated by
comparing the Pearson correlation coefficient (r), and root

mean squared error (RMSE).

4. Results

The average crime rates per 1,000 people was 105.8 (95%
CI, 99.2-112.4), 60.5 (95% CI, 56.5-64.5) and 165.5 (95%
CI, 143.2-187.7) separately for Chicago (n=798 census
tracts), Los Angeles (n=991) and St. Louis (n=106). Per-
sonal crime rates were higher for Chicago (39.6 [95% CI,
36.5- 42.8]), and St. Louis (53.8 [95% CI, 44.9-62.7]) com-
pared to Los Angeles (17.1 [95% CI, 15.7-18.5]). In con-
trast, property crime rates were higher for St. Louis (92.1
[95% CI, 81.8-102.4]), compared to Chicago (54.1 [95% CI,
50.8- 57.3]) and Los Angeles (41.1 [95% CI, 38.5-43.8]).

Regression models using the built environment indicator
achieved variable predictions of crime rates across census
tracts in the three US cities. The association between the
estimated and reported crime rates was higher for St. Louis
(r=0.76, p<0.01) and Chicago (r=0.70, p<0.01), compared
to Los Angeles (r=0.58, p<0.01). These associations were
noted both in trend and magnitude (see Figure 1-2). Cen-
sus tracts with highest crime rates, which can be classified
statistically as outliers, were underestimated in some cases,
although typically predicted as the highest in each city.

Separate models for each city to investigate these deviations
while excluding outliers, showed that our models could
reproduce spatial variations in crime rates across census
tracts in Chicago (r=0.88, p<0.01), Los Angeles (r=0.75,



Figure 3. Predictions of crime rates per 1,000 persons across census tracts in Chicago, Illinois. (A) the reported crime rates, (B) predictions
for a single model fitted to all crime levels, and (C) combined predictions from the separate model without outliers and model for outliers
(i.e., census tracts with highest crime rates). The gray shaded regions are census tracts with zero population or no reported crimes.

p<0.01) and St. Louis (r=0.84, p<0.01).

These associations could be partially explained by socioe-
conomic status, which studies have demonstrated can be
inferred from satellite images (Jean et al., 2016). Although
we observed significant associations between some of the
sociodemographic variables and personal crime rates for
Chicago, these associations were much weaker for the other
cities.

The association between overall reported and model esti-
mated crime rates using socioeconomic and demographic
variables was consistent across the three cities; 0.61
(p<0.01), 0.55 (p<0.01) and 0.66 (p<0.01) for Chicago,
Los Angeles and St. Louis (Figures S3-S5). After the
removal of census tracts with highest crime rates, the corre-
lation increased to 0.73 (p<0.01), 0.54 (p<0.01) and 0.74
(p<0.01) for Chicago, Los Angeles and St. Louis. These
values were lower than those observed for the models solely
based on the built environment indicator inferred from satel-
lite imagery across all cities.

Seventy-one data points were identified as outliers across
the three cities. Our models explained approximately 67.6%
and 16.6% of the variation in crime rates across census
tracts for the models using the built environment and so-
ciodemographic variables, respectively. The population em-
ployed was approximately 48.9% (95% CI, 44.5%-53.3%)
and percent with income below poverty was 11.8% (95% CI,
10.2%-13.4%) for these census tracts. The tight confidence
intervals suggest similarities in sociodemographic factors
within high crime census tracts across cities. However, the
most significant predictor of crime in these census tracts
was education (i.e., percent of population 25 years and over

with some college or associates degree). Also, these regions
tend to be more easily accessible, with higher population
density. Additionally, when shown a specific census tract
our approach in many cases can identify regions (i.e. grids)
with the highest crime rates based on the built environment
indicator.

5. Discussion & Conclusion

Neighborhood crime rates can be explained by a complex
interaction of environmental, societal, and individual level
factors. While socioeconomic and demographic variables
have been presented as predictors of crime, these factors
do not completely explain neighborhood crime rates. In
this study, we quantified the variation in crime rates at the
census tract level across three cities that are explainable
by features of the physical environment. Our results sug-
gest that characteristics of the built environment are able
to distinguish high and low crime areas above and beyond
residential compositional characteristics. We also observe
that our models are predictive of overall crime rates and do
not favor personal or property crime. The accuracy of pre-
dicting personal and property crime rates was comparable
when using socioeconomic variables or the built environ-
ment indicator. Additionally, census tracts with high crime
rates heavily influence predictions when models are fitted
to all the data. The differences in predictions across cities
might indicate that for some cities the physical environment
might explain variations in crime rates better than for others.

However, there are some limitations to our modeling ap-
proach. First, we assume that our crime data is accurate.
There is extensive criminology research suggesting that



crime databases only represent a biased sample of all crimi-
nal offence (Langan, 1995; Morrison, 1897; Levitt, 1998).
These data are influenced by several factors including, ex-
isting police priorities and crime incidence reporting. For
example, although drug crimes tend to be widely distributed,
police arrests on drug offences tend to be concentrated in
lower income and high non-white population neighborhoods
(Lum & Isaac, 2016). In our data, we noted higher crime
rates were reported in census tracts with lower income and
with a higher percentage of blacks. Therefore, although
our methods provide some quantitative association between
the physical environment and crime rates, it should not be
used as the sole predictor of crime rates. Also, processes
are needed to address the bias inherent in these data. Sec-
ond, the various data sources used in our analysis have been
collected at different points in time. The 5-year census es-
timates and crime reports were released in 2014 and 2016
respectively, while the time-stamp of satellite imagery is
unknown. We assume that the census estimates aren’t drasti-
cally different from the true population distribution in 2016,
but we acknowledge that the temporal mismatch might have
led to small error margins in our analysis. We attempted to
collect satellite imagery from the same year as the crime
reports, but weren’t able to acquire images of appropriate
resolution during the time of the study.

Our results are in alignment with empirical research sug-
gesting there is a relationship between physical disorder and
fear of crime and crime rates (Wilcox et al., 2004; Sampson
& Raudenbush, 2004). Thus, interventions to change the
environment may help to prevent future crime, and improve
individual-level health and psychological functioning (Hin-
kle & Weisburd, 2008). One potential approach used for en-
vironmental interventions is Crime Prevention Through En-
vironmental Design (CPTED). CPTED is centered around
incorporating design features that promote safety and se-
curity within a community (Karnieli et al., 2008). Design
features include the following: natural surveillance, access
control, territorial reinforcement, activity support, and main-
tenance. These design features help reduce opportunity
for crime, increase social control, provide reassurance to
community members by signaling to observers that disorder
is not tolerated. Examples of specific community design
strategies include installing outside lighting to entrances,
walkways, and parking lots; decreasing visual barriers and
concealed areas (e.g., underpasses); building fencing and
walls to demarcate public and private property; designing
landscaping with ground cover and tree canopy to allow for
visibility and demonstrate ownership; responding to main-
tenance issues (e.g., graffiti); and providing recreational
facilities and structural support for safe activities.
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1. Materials and Methods

1.1. Crime Data

Some police departments in metropolitan cities in the United
States provide citizens with an up-to-date digital database of
crime incidents occurring throughout the city. Every report
is associated with a Uniform Crime Reporting (UCR) code,
which classifies the offense into one of several categories,
such as murder, sexual assault, robbery, aggravated assault
etc. Crimes are also tagged with date and time of occur-
rence, report and geolocation. In this paper, we analyzed
crime reports from 2016 for the cities of Chicago, Illinois;
St. Louis, Missouri; and Los Angeles, California (Figure
1). In the United States, crimes are categorized into Part I
and Part II offenses (also known as index and non-index of-
fenses) according to the UCR program (U.S. Department of
Justice, 2004). Part I crimes are considered serious offenses
and are further divided into personal and property crimes.
These include homicide, rape, aggravated assault, robbery,
burglary, motor vehicle theft, larceny-theft and arson. Other
crimes such as public peace violation, kidnapping, illegal
dumping, liquor law violation, fraud etc. are classified as
Part II offenses. Crimes that inflict physical, emotional or
psychological harm to the victim are said to be personal
crimes. On the other hand, property crimes are committed
with the objective of acquiring money or materialistic ob-
jects and may or may not be accompanied by the use of
force. Our study aims to understand the impact of the built
environment on the incidence of both Part I and II crimes.
Hence, our definition of personal and property crimes was
modified to encompass both Part I and II crimes.

1.2. Socio-economic Demographic Data

Crime datasets available from respective police departments
contained information on both Part I and Part II crimes. In
all crime datasets, there were several columns to indicate
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Figure 1. Plots of socioeconomic variables with high significance
in prediction of crime rate across census tracts in Chicago, Illinois.
The figures show the percentage of white population (A), percent-
age of black population (B), percentage population with income
below poverty (C), and percentage of unemployed population (D).
The gray shaded regions are census tracts with zero population or
no reported crimes

the crime codes, crime type, description, date and time
for occurrence and reporting of crime, several levels of
address for the general location of crime, (x, y) coordinates
in the State Plane Coordinate System (SPCS) or latitude,
longitude information. Often, it was also indicated whether
the incident is a new record or an update to a previous record.
Some records lacked accurate location information, and
addresses were available only at the block level. Due to the
uncertainty of geolocation, these records were left out of our
analysis. The records were filtered for the year 2016 by the
occurrence date. The crime reporting codes vary from one
state to another; hence, we examined the description string
to select relevant reports. From the cleaned dataset, geo-
coded crimes were aggregated to the level of census tracts in
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accordance with the boundaries established by 2010 United
States Census. Chicago, Los Angeles and St. Louis have
807, 679 and 106 census tracts respectively. The overall
crime counts were normalized with population estimates
for each census tract. Our analysis involved first assessing
the association between the built environment and overall
crime rates. Next, we assessed the association between
the built environment and personal crimes and property
crimes. Lastly, we evaluated how well socioeconomic and
demographic factors could predict crime rates

We used the American Community Survey (ACS) 5-year
estimates of the following variables at the census tract level
(ACS code: 080): population, poverty status in the last 12
months, race, gross median rent, education, population by
age, gender, employment status, and total land area (Figure
2). The specific socioeconomic and demographic variables
considered included, percent employed, percent income be-
low poverty level, percent white population, median rent (in
dollars), per capita income, percent male, percent female,
percent high school graduate (includes equivalency) (25
years and over), percent with some college or associate’s
degree (25 years and over), percent with bachelor’s degree
or higher (25 years and over), population density, percent
population below 10 years of age, percent population be-
tween 10 and 20 years of age, percent population between
20 and 30 years of age, percent population between 30
and 40 years of age, percent population between 40 and 50
years of age, percent population above 50 years of age, per-
cent black population, percent Hispanic population, percent
Asian population and percent American-Indian population.
Aggregated numbers for crime incidence were normalized
with ACS 5-year population estimates to obtain number of
crime incidents per 1,000 persons for each tract. Tracts with
zero population estimates and more than 100% error margin
in population estimate were excluded from our analysis. For
census tracts located in Los Angeles city and other county
sub-divisions, we use regional data only for the area that
lies within Los Angeles.

1.3. Satellite Imagery Data

Each census tract was converted into a square grid where
each location is separated by roughly 150 meters from the
adjacent location. Satellite images were downloaded from
the freely available Google Static Maps API, at a zoom level
of 18. Our dataset comprised of nearly 100,000 images for
the three metropolitan cities. Using the location information
from geo-coded crimes, each satellite image was assigned
an annual crime count. This resulted in a dataset consisting
of images ranging from very high to zero crime occurrence
areas. Areas with zero or low crime occurrences tend to be
the ones with city highways or waterways, recreational areas
(football fields, parks) and areas with no human habitation.
On the other hand, areas with higher crime counts generally

belonged to downtown or densely populated neighborhoods.
The top and bottom 10% of images in this spectrum of
crime counts were selected to prepare a binary classification
dataset, which was used for fine-tuning the pre-trained con-
volutional neural networks. Some images from this dataset
are presented in Figure 2.

1.4. Deep Neural Network & Transfer Learning

Convolutional neural networks have been at the helm of
breakthrough research in computer vision for several years.
However, such architectures need enormous amount of train-
ing data and time to achieve this level of proficiency in
image understanding. In the recent years, transfer learn-
ing has enabled smaller datasets to be used to accomplish
complicated tasks such as, training a network to identify
high crime regions using satellite images, and in lesser time.
Transfer learning is the method of enhancing learning for
task B by transferring knowledge from task A which has al-
ready been learnt (Pan & Yang, 2010). For transfer learning
to be effective, tasks A and B need to be similar to some
extent. It has been shown that the features extracted from
ImageNet-trained convolutional networks can be success-
fully deployed as feature vectors in linear classifiers and
regression models for various downstream tasks (Yosinski
et al., 2014). The transferability of features increases as one
moves towards the earlier layers usually the final convolu-
tional layers or the first few fully connected layer tend to
perform best in such tasks. Moreover, the pre-trained mod-
els can be fine-tuned to a related task with controlled train-
ing and small datasets. As before, features also extracted
from the fine-tuned models can be utilized in other machine-
learning methods. Therefore, we employ fine-tuning and
transfer learning to identify features of the built environment
from satellite images and associate them with neighborhood
crime rates. This approach is similar to that described by
Jean et al (Jean et al., 2016); a two-step transfer learning
model using convolutional neural networks. We used a pre-
trained network VGG-F which has been trained for object
recognition on the ImageNet database and was the runner-
up in ILSVRC 2014 (Simonyan & Zisserman, 2015). The
output layer of this network was originally designed for
classifying between 1000 object categories. We modified
the output layer for binary classification and fine-tuned the
convolutional neural network to distinguish between low
and high crime regions from satellite images. Fine-tuning
guides the network to learn complex filters which are more
relevant to criminal activity. The fine-tuned VGG-F network
achieved approximately 80% classification accuracy on the
validation set after 30 epochs. Visualization of filters from
the convolutional layer revealed that the filters learned to
recognize physical attributes such as green cover, buildings
and roads. This architecture has a depth of eight of which
the final three are fully-connected layers. Feature vectors
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Figure 2. Predictions of crime rates per 1,000 persons across census tracts in St. Louis, Missouri. (A) the reported crime rates, (B)
predictions for a single model fitted to all crime levels (C) combined predictions from the separate model without outliers and model for
outliers (i.e., census tracts with highest crime rates).

extracted from the seventh layer were one-dimensional ar-
rays of length 4096 and were extracted from a forward pass
of each of the satellite images in our dataset through this
fine-tuned net. The final predictions for crime rates were
performed at the level of census tracts. Hence, features from
all images belonging to the same tract were aggregated to
produce a single feature vector of dimension 4096 for that
tract. These feature vectors were inputs for the next step of
transfer learning in our model.

1.5. Elastic Net Regression Model

We used elastic net, a regularization and variable selection
technique4 to reduce the dimensionality of our feature vec-
tor and identify the most predictive features. Elastic Net
is a regularization method that integrates the advantages of
Ridge regression and Least Absolute Shrinkage and Selec-
tion Operator (LASSO) so that it eliminates variables that
are not significant in prediction, while maintaining corre-
lated variables that are significant in the model. For each
of the three cities, we fitted an individual model to predict
crime rates solely using features extracted from satellite
images. We fitted another model separately for low and
median crime rates (referred to as low crime), and another
for high crime rates based on the assumption that high crime
regions might have features that are uniquely different when
compared to other census tracts. Additionally, high crime
rates heavily influenced the model outcomes when the en-
tire dataset was used. The high crime regions were defined
using the statistical definition of outliers as follows, crime
rates

greater than max {(x + 2 ⇤ �x) and (1.5 ⇤ IQR(x))}

where x is the mean crime rate, �x is the standard deviation
and IQR is the interquartile range.

We also assessed cross city performance by predicting crime

rates for each of the other cities based on the model fitted
to data for one city. For example, the model fit to Chicago
was used to predict crime rates in St. Louis. We did this to
assess the generalizability of the models developed for each
city. Next, we developed separate models for predicting
crime rates using demographic and socioeconomic variables
that have been used extensively in the crime literature. The
crime rates were standardized prior to model fitting. We
used a five-fold cross validation approach, which involves
splitting the data into five separate groups. Each group is
used in the model fitting and the data points (i.e., census
tracts) not included in the model are then predicted. The
models were fit using the glmnet package in R.

2. Additional Results & Conclusion

The associations observed between the built environment
indicator and crime rates could be partially explained by so-
cioeconomic status, which studies have demonstrated can be
inferred from satellite images (Figure 3 shows findings for
St. Louis). Although we observed significant associations
between some of the sociodemographic variables and per-
sonal crime rates for Chicago, these associations were much
weaker for the other cities (Figure 4). Specifically, variables
highly associated with overall crime rates included percent
income below poverty (r= 0.42, p<0.01), percent black
population (r=0.58, p<0.01) and percent white population
(r= -0.54, p<0.01). In addition, percent black population
(r=0.67, p<0.01), percent income below poverty (r=0.48,
p<0.01), percent white population (r=-0.63, p<0.01) and
percent employed (r=-0.52, p<0.01) were also strongly as-
sociated with personal crime rates. These observations agree
with reports on the distribution of crimes in Chicago (chi).
Similarly, the strongest positive predictors of overall crime
rates in Chicago were poverty, percent black population, and
percent population between the ages of ten and twenty. In
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Figure 3. Scatterplots for crime rate predictions using socioeco-
nomic variables. Results are shown for Chicago for the entire
dataset (A) and the model without outliers (B). Similar results are
presented for St. Louis, (C) and (D), and Los Angeles, (E) and (F).
The r2 values are based on five-fold cross-validation.

contrast, the strongest negative predictors were population
density, and employment. We observed similar associa-
tions for St. Louis and Los Angeles. Education was also
negatively associated with crime rates in Los Angeles.

Furthermore, associations between model estimates and
reported personal crime rates were 0.78 (p<0.01), 0.61
(p<0.01) and 0.61 (p<0.01) for Chicago, Los Angeles and
St. Louis, respectively. With the exclusion of census tracts
with highest crime rates, the correlation increased to 0.88
(p<0.01), 0.76 (p<0.01) and 0.74 (p<0.01) for Chicago,
Los Angeles and St. Louis respectively. Similar associations
were observed for property crime rates; 0.69 (p<0.01), 0.44
(p<0.01) and 0.84 (p <0.01) for census tracts in Chicago,
Los Angeles and St. Louis respectively. After excluding
census tracts with highest crime rates, the correlation in-
creased slightly for Chicago (0.71, p<0.01) but dropped for
Los Angeles (0.41, p<0.01) and St. Louis (0.72, p<0.01).

Furthermore, the associations between the sociodemo-
graphic model estimates and reported personal crime rates
were 0.72 (p<0.01), 0.60 (p<0.01) and 0.64 (p<0.01) for
Chicago, Los Angeles and St. Louis, respectively. After
excluding census tracts with the highest crime rates, the
predictions improved slightly for Chicago (0.77, p<0.01),

Los Angeles (0.70, p<0.01) and St. Louis (81.3, p<0.01).
Compared to estimates using the built environment indica-
tor, these estimates were slightly lower for Chicago and Los
Angeles, but comparable for St. Louis.

Additionally, estimates using the socioeconomic data had a
0.51 (p<0.01), 0.50 (p<0.01) and 0.73 (p<0.01) correlation
with reported property crime rates for Chicago, Los Angeles,
and St. Louis, respectively. After excluding census tracts
with the highest crime rates, the associations increased for
Chicago (0.65, p<0.01) and St. Louis (0.80, p<0.01), and
dropped for Los Angeles (0.48, p<0.01). These observa-
tions were comparable to estimates made using the built
environment indicator.

The census tracts with some of the highest crime rates in
Los Angeles and St. Louis include public parks. In spite of
being low-populated areas, they register high incidence of
crime which may be attributed to the regular inflow of crowd
from nearby areas. Crime rates for such areas can be better
predicted by taking the structural features of surrounding
census tracts into account. Some census tracts with very
high crime rates in Chicago barely span across four to five
blocks and also have a large margin of error in their popu-
lation estimates. Prediction of crime for such areas could
also benefit from wider coverage of neighborhood for fea-
ture extraction. Advances in deep learning methods will
make possible future improvements in feature extraction
and predictions using these approaches.
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