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Abstract
Societal-scale data is playing an increasingly
prominent role in social science research; ex-
amples from research on geopolitical events in-
clude questions on how emergency events impact
the diffusion of information or how new policies
change patterns of social interaction. Such re-
search often draws critical inferences from observ-
ing how an exogenous event changes meaningful
metrics like network degree or network entropy.
However, as we show in this work, standard esti-
mation methodologies make systematically incor-
rect inferences when the event also changes the
sparsity of the data. To address this issue, we pro-
vide a general framework for inferring changes in
social metrics when dealing with non-stationary
sparsity. We propose a plug-in correction that can
be applied to any estimator, including several re-
cently proposed procedures. Using both simulated
and real data, we demonstrate that the correction
significantly improves the accuracy of the esti-
mated change under a variety of plausible data
generating processes. In particular, using a large
dataset of calls from Afghanistan, we show that
whereas traditional methods substantially over-
estimate the impact of a violent event on social
diversity, the plug-in correction reveals the true
response to be much more modest.

1. Introduction
Over the past decade, the increasing availability of societal-
scale data has led to new approaches to social science re-
search (Lazer et al., 2009; Eagle et al., 2010; Spiro, 2016;
Chang et al., 2014). In this literature, one common strain
of analysis studies the human response to important geo-
political events, using digital trace data as a lens into that
response. For instance, (Sakaki et al., 2010) shows how
to rapidly detect an earthquake from Twitter behaviour,
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Figure 1. The extreme change in communication sparsity (mea-
sured in calls per hour) in a set of individuals in response to a
violent event occurring around at the dotted blue line.

(Bagrow et al., 2011) uses mobile phone data to study collec-
tive response to several different types of emergencies, and
(Spiro et al., 2012) studies rumors on social media following
an oil spill, to cite just a few examples.

A common methodological challenge in such research is
the issue of sampling sparsity: where the likelihood of ob-
serving any given edge in the social graph during a given
period may be low and lead to inaccurate estimates of an
individual-level properties. This problem is well-known
and there is a rich body of work (Raghunathan et al., 2017;
Valiant & Valiant, 2011; 2013; Saif et al., 2014; Hoteit et al.,
2016) in both theory and application considering how to bet-
ter estimate in the presence of sparsity. However, additional
and previously unconsidered issues arise when this sparsity
may vary over time: we call this property dynamic sampling
sparsity.

While dynamic sampling sparsity appears in many scenarios,
analyzing the impact of emergency events provides a particu-
larly illustrative example. Almost without fail, emergencies
produce an immediate spike in transaction log activity (in-
deed, this spike often serves as the basis for emergency event
detection and prediction (Young et al., 2014; Kapoor et al.,
2010; Dobra et al., 2015; Gundogdu et al., 2016; Sakaki
et al., 2010)). However, this means that the sparsity of the
social networks decreases at precisely the most confounding
time: in the immediate aftermath of the event. An example
of the abrupt change in sparsity conditions, derived from
anonymized mobile phone data from Afghanistan, in the
wake of a serious emergency can be seen in Figure 1. Un-
derstanding how important metrics of mobility and social
diversity are impacted by such an emergency event, without
being misled by the increased volume of communication,
now becomes a serious challenge.
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Figure 2. Generative model for the data for a single period of time
when (a) sparsity is stationary, and (b) sparsity is non-stationary.

In this work we introduce and define this problem and show
how it impacts a broad swathe of literature on societal-scale
communication data. Using both simulated and real-life
data we prove this problem materially affects the conclu-
sions drawn from analysis. We propose a simple heuristic
that is guaranteed to address the problem in some scenarios
and has all-round strong empirical performance. Finally, we
discuss the pertinence of our investigation to the broader
computational social science community, noting that this
problem extends to many scenarios outside of emergency
event analysis, and suggest further questions of both practi-
cal and statistical relevance.

2. Background and Related Work
A common approach to current computational social sci-
ence research involves the analysis of summary statistics
that are derived from societal-scale digital trace data. Sev-
eral of these statistics are often complicated functions of
discrete calling distributions. Two illustrative examples are
network degree (which captures the number of unique con-
nections of each node in the network, also called degree
centrality) and network entropy (a measure of the dispersion
of each individual’s network). For any graph, let the number
of interactions between node i and node j during a given
time period t be cij(t), and the total volume of i’s interac-
tions ci(t) =

∑
j cij(t). Degree Di(t) and network entropy

Hi(t) of node i during period t are defined as,

Di(t) = |{j | cij(t) > 0}| , Hi(t) = −
∑
j

cij(t)

ci(t)
log

cij(t)

ci(t)

The key metrics when analyzing networks with geomark-
ers include location entropy (Zhao et al., 2016) for diver-
sity of locations visited and radius of gyration (Gonzalez
et al., 2008) for travel distance. The aforementioned social
(Llorente et al., 2015; Cho et al., 2011; Serin & Balcisoy,
2012) and location (Pappalardo et al., 2015; Frias-Martinez
& Virseda, 2012) metrics have been vital in a variety of so-
ciological analyses on many different large social networks.
Of particular interest is how changes in these metrics during
emergencies (Young et al., 2014; Kapoor et al., 2010) or
sudden downturns in employment(Toole et al., 2015) can be
accurately tracked, for example by using paired difference
tests like the Wilcoxon signed-rank test.

However it should be noted that they come with several
statistical caveats. Technically we can only compute an
estimator θ̂(Y ) for some metric of interest θ∗ using the data
Y available. Two key properties of an estimator in this
context are bias(θ̂) = E[θ̂]− θ∗, and variance, var(θ̂) =
E[(θ̂ −E[θ̂])2]. Unlike simple functions like the mean of a
distribution, the metrics mentioned earlier do not have an
unbiased estimator: in fact there is a lively field of research
looking into how to mitigate the impact of bias on function
like entropy (Orlitsky et al., 2004; Valiant & Valiant, 2011;
Jiao et al., 2015; Acharya et al., 2017). As such any estimate
for these metrics will have some bias: the sparser the social
network, the worse the bias will be.

Why bias matters: Let us explicitly consider the case
where we want to track the change in a metrics like so-
cial entropy before/after an emergency event using a paired
differences test. Since the sparsity levels can differ widely
before and after an event, the bias in the measurement of
entropy will also be different. Therefore, when we take a
paired difference, we are not only measuring the change,
but also an additional unknown bias term that is difficult
to isolate. Even when there is no change in entropy, a sys-
tematic bias due to dynamic sampling sparsity can lead to a
consistently increased rate of type I errors. This is a prob-
lem significantly different from the standard problem of
reducing estimator bias (as in the case of entropy). While
a few works empirically noted this problem in the context
of location metrics (Zhao et al., 2016; Ranjan et al., 2012),
they do not provide a general solution. Moreover, exist-
ing heuristic solutions such as dividing a biased metric by
the number of communications (de Montjoye et al., 2016)
have no guarantees in improving accuracy nor any thorough
experimental analysis in this situation.

3. Theory: Dynamic sampling sparsity
In the case where sparsity is stationary, the number of sam-
ples observed before and after an event is the same on aver-
age. The generative model for the observed data is as shown
in Figure 2(a), where di(t) denotes the true distribution and
d̂i(t) denotes the observed distribution for an individual i.
However, as motivated in the introduction, the sampling
rate or sparsity is not stationary (Figure 1). In this section,
we describe a general framework to capture the observation
model in the setting of dynamic sparsity. Let c ∼ Poi (λ)
denote a random variable drawn according to Poisson distri-
bution with rate parameter λ. At time t, let λi(t) be the rate
of sampling for individual i and ci(t) ∼ Poi (λi(t)) denote
the number of samples observed for an individual i. So,
we get to observe the empirical distribution d̂i(t), which is
obtained by drawing ci(t) samples from the true distribution
di(t). This generative model is illustrated in Figure 2(b).

Let f be the functional (e.g: entropy) we are interested in
computing on the distribution d and f̂i(t) be its estimator on
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Figure 3. Comparison of how the (a) bias and (b) type-I error rate
(α) for estimating difference in entropy increases with more varia-
tion in sparsity. (c) and (d) show the same for network degree. The
bands in (a) and (c) show the variance in estimates.

individual i at time t. We note that this estimator is not only
dependent on the true underlying distribution di(t), but also
the sampling rate λi(t). Therefore, its bias can be expressed
as a function B of these two:

bias(f̂i(t)) = E[f̂i(t)]− fi(t) =: B(di(t), λi(t)). (1)

Now consider this in the context of a paired difference test:
where there are two time periods a and b and we are inter-
ested in δi := f(a)− f(b). In this case the corresponding
estimator for δi is δ̂i := f̂i(a)− f̂i(b). Using this definition
and equation 1 we note that

E(δ̂i) = δi +B(di(a), λi(a))−B(di(b), λi(b)). (2)

A simple corollary of equation 2 is that for E[δ̂i] to be unbi-
ased under the null hypothesis (when E[δi] = 0), we need
the following to hold, for all di(a), λi(a) and λi(b),

B(di(a), λi(a)) = B(di(a), λi(b)). (3)

For functions like entropy, which do not have unbiased
estimators (Paninski, 2003), such a condition would never
hold for any non-trivial distribution di and estimator f̂i.
This leads to a systematically increased type-I error rate
under classic tests like Wilcoxon signed-rank test both in
theory and in practice (as illustrated in Figure 3).

The Downsampling correction: We provide an intuitive
correction for this scenario that can be plugged into any
existing estimator f̂ . Assume WLOG that ci(a) ≥ ci(b)

for a given i. Then instead of using d̂i(a) we generate
d̃i(a, ci(b)) by drawing ci(b) samples from d̂i(a) repeatedly.
We then have an estimator

δ̃i := E
(
f̂(d̃i(a, ci(b)))

)
− E

(
f̂(d̂i(b))

)
(4)

Figure 4. Analysis of (b) how different methods infer the change
in network entropy in (a) the presence of varying sampling sparsity
caused by a violent event. The period between the dotted blue lines
indicate when the sliding window contains the bomb blast period.
Marked points in (b) indicate a statistically significant difference
between this 24-hour period and 24-hour period one week prior.

and vice versa for the case where ci(a) ≤ ci(b). We see
that this intuitive and computationally efficient modification
(since it only adds a small constant multiplier to the esti-
mator f̂ running time) satisfies equation 3. Consequently,
it will produce unbiased results in the null case, empirical
validation for this result is seen in figure 3. Providing the-
oretical guarantees for the non null case (when E[δi] 6= 0)
is much harder, but empirical results (figure 5) show the
downsampling correction constantly improving over state
of the art estimators in a variety of conditions.

4. Empirical Analysis
We perform a number of empirical studies focusing on in-
ferring the change in network entropy and network degree.
We pick these two since they are both socially informative
as well as ubiquitously available over many different types
of social graphs. We are interested in how estimates in the
change of these metrics are impacted by the variation in spar-
sity, which we quantify as the elevation rate r = λ(after)

λ(before) .

We compare our down-sampled estimator against the ubiqui-
tous Naive-Estimator (simply δ̂i as in section 3) and Jack-
knifed naive (Efron & Stein, 1981) estimators as well as
the state of the art JVHW (Jiao et al., 2015) and APML
(Pavlichin et al., 2017) estimators. Note that JVHW is only
applicable to entropy and not network degree. Our plug-in
estimator can be applied to all four of the aforementioned
estimators, but in the interest of clarity we only show cor-
rected JVHW for entropy and the corrected jack-knife for
network degree. The results are broadly similar in the other
cases.
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Figure 5. Panels (a)-(c): Experiments showing type-I error rates (α) for entropy change for the uniform, geometric and dirichlet scenarios
respectively. Panel (d): Type-I error rate for network degree under the uniform scenario. Panels (e)-(g): Power (β) for entropy change
detection at an elevation rate of 3 for the uniform, geometric and dirichlet scenarios respectively (h): Power for network degree under the
uniform scenario and elevation rate of 3.

In all of these experiments we ask two questions. Firstly,
what is the bias in the estimated difference for each estimator
under different values of elevation rate r? Secondly, how
does this translate into type-I and type-II errors? The first
is simply done by computing the average predicted change
and comparing it to the actual average change. The second
question is studied by applying a Wilcoxon signed-rank test
to the estimated differences with a desired α of 0.01.

Real CDR data: We use a country-wide CDR dataset col-
lected over 6 months in Afghanistan comprising millions
of unique callers. We focus on a set of N = 1000 callers
living in the same area. For each trial, we subsample from
the full 6 month of calls at a rate λa that gives the equivalent
of one week’s worth of calls to make period a and subsam-
ple from the same distribution at rate λb = rλa to make
period b. Since the distributions are the same, ideally we
would like to estimate that there is no difference in either
degree or entropy. As Figure 3 shows, even doubling the
call frequency during period b is enough to fool state of the
art estimators more than 30% of the time, while simpler esti-
mators are totally thrown off by even r = 1.5. As expected,
our method accurately reports no change occurs.

These results on real data are important because they bol-
ster the assertion that accounting for sampling sparsity can
material impact the conclusion of real computational so-
cial science studies. The motivating study for this work
was an analysis of how metrics like social entropy change
are impacted by violent events. In Figure 4 we plot how
different methods and our own corrected method give sub-
stantially different results for a period of time after an event.
With even a modest r of 1.2 or 1.3 the perceived change
in entropy can appear to be twice or three times as high as
a downsampled method perceives it to be and many more
time periods appearing to show a statistically significant in-
crease. Given the reasons to doubt non-corrected methods it
is entirely possible that performing such an analysis without

accounting for sampling sparsity could lead to making an
incorrect inference about the effect of violence.

Synthetic data: While experiments on real data are essen-
tial to proving the practical concerns around the sampling
problem they only provide a fixed set of conditions to ex-
periment with. We designed a set of experiments that drew
empirical call distribution as in figure 2 with a variety of
base distributions di(a) (Dirichlet with αD = 1.0, geomet-
ric with p = 0.9, and uniform) and λi(a) drawn from a
logNormal with mean 50. Since we can vary (and know
precisely) di(a) and di(b), this enabled us to report empiri-
cal results for both the null and non-null (E[δi] 6= 0) cases,
which we summarize in Figure 5.This bolsters the earlier
conclusions that applying the correction can only improve
the accuracy of change detection since it considers both
null and non-null cases as well a wider range of underlying
distributions.

5. Conclusion
In this work we highlight the problem of dynamic sampling
sparsity and show how it can seriously impact the accuracy
of inferences in our setting of emergency event analysis.
However, we wish to emphasize that this might be a perva-
sive problem in the analysis of social networks. Comparison
of social metrics across two groups with living in differ-
ent places (Eagle et al., 2009) or having different wealth
levels (Eagle et al., 2010; Llorente et al., 2015) will also
be afflicted by this problem. Studies looking at how social
metrics evolve in the long term instead of just a before/after
comparison will also be similarly impacted. As such, it is
very important for researchers in the area to be aware of
this issue and be able to estimate how much it could impact
the outcome of a specific analysis. Furthermore, rather than
applying one-off fixes to each such biased metric, more
research is needed into optimal statistical detection, estima-
tion and inference tools for large-scale heterogeneous and
sparse datasets.
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