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Abstract

As awareness of the potential for learned mod-
els to amplify existing societal biases increases,
the field of ML fairness has developed mitiga-
tion techniques. A prevalent method applies con-
straints, including equality of performance, with
respect to subgroups defined over the intersec-
tion of sensitive attributes such as race and gen-
der. Enforcing such constraints when the sub-
group populations are considerably skewed with
respect to a target can lead to unintentional degra-
dation in performance, without benefiting any
individual subgroup, counter to the United Na-
tions Sustainable Development goals of reducing
inequalities and promoting growth. In order to
avoid such performance degradation while ensur-
ing equitable treatment to all groups, we propose
Pareto-Efficient Fairness (PEF), which identifies
the operating point on the Pareto curve of sub-
group performances closest to the fairness hy-
perplane. Specifically, PEF finds a Pareto Opti-
mal point which maximizes multiple subgroup
accuracy measures. The algorithm *scalarizes*
using the adaptive weighted metric norm by iter-
atively searching the Pareto region of all models
enforcing the fairness constraint. PEF is backed
by strong theoretical results on discoverability
and provides domain practitioners finer control in
navigating both convex and non-convex accuracy-
fairness trade-offs. Empirically, we show that PEF
increases performance of all subgroups in skewed
synthetic data and UCI datasets.

1. Introduction

Increased awareness of the potential for machine learning
models to amplify existing societal biases (Bolukbasi et al.,
2016) has informed work in AI systems. Several approaches
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to mitigate bias rely on defining a set of sensitive variables
whose combinations of values create subgroups of data,
often with different real-world distribution characteristics,
such as skew. However a known trade-off between fair-
ness constraints and classifier accuracy exists (Menon &
Williamson, 2018). We propose a fairness constraint based
on Pareto-Efficiency (Godfrey et al., 2007) to avoid uninten-
tional degradation in subgroup performance, while striving
for increased accuracy. The Pareto-Efficient Fairness (PEF)
constraint restricts the choice of ML models to the Pareto
frontier to ensure higher accuracy across *fair* model op-
tions.

Existing fairness mitigation algorithms often explicitly de-
fine constraints on model subgroup performance (e.g Equal-
ity of Odds (Hardt et al., 2016)), enforced using Lagrangian
relaxation (Menon & Williamson, 2018; Liu et al., 2018;
Burke, 2017). However, (Menon & Williamson, 2018)
has established that such approximate group fairness con-
straints are not perfectly possible unless the underlying sub-
populations demonstrate perfect accuracy with respect to the
target. This inherent tradeoff between accuracy and fairness
is often amplified due to sampling biases in the underlying
sub-population distributions. The skew in sub-population
data distributions, due to underlying population traits, varied
subgroup population prevalence, sampling bias, etc, will be
propagated in a model if not addressed (Zhao et al., 2017).

Similarly, as the number of sensitive variables increase, real-
world sub-populations at the intersection of variables may
be extremely limited to sample from (Kearns et al., 2017).
Forcing subgroup metric constraints in these use-cases may
result in trivial accuracy (equivalent to a random coin toss),
since equivalency metrics are constrained by the model’s
worst performing subgroup (Menon & Williamson, 2018).
The increase in sensitive variables remains a critical problem
in real case studies, where existence of highly correlated
proxy variables expand the set of variables to be considered
(Bickel et al., 1975; Chiappa & P. S. Gillam, 2018; Dheeru
& Karra Taniskidou, 2017).

Our contribution of the Pareto-Efficiency Fairness (PEF)
criterion selects a model whose individual subgroup per-
formance exceeds that of all other models. In some cases,
a Pareto-Efficient definition may be at odds with a strict
equality fairness criterion. Figure 1 illustrates cases where
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extremely unfair models might be Pareto optimal and vice
versa. However, our algorithm avoids this pitfall by limiting
the search space on the Pareto frontier within given fairness
bounds.

Our proposed bias loss function achieves Pareto-Efficient
performance, which by definition is superior in performance
to solutions based on equalizing subgroup performance.
Based on theory of multiple objective optimization for con-
tinuous Pareto fronts, we show that our approach achieves an
operating point which is better both in terms of global accu-
racy and individual subgroups accuracy than methods which
approximate hard constraints of equality (Zhao et al., 2017)
and adversarial multi-task learning (Beutel et al., 2017) on
both synthetic data and UCI datasets.

2. Related Work

Much previous work has explored methodologies for achiev-
ing subgroup fairness in ML classification. (Zhao et al.,
2017) aims to achieve corpus level parity with Lagrangian
relaxation. Updates after each batch of training are approxi-
mations on samples with the goal of achieving corpus level
parity across sensitive variables. The work has not been
extended to a large number of subgroups.

(Menon & Williamson, 2018) show that a disparate im-
pact constraint is equivalent to a cost sensitive constraint.
The work formulates a fairness frontier: for a given lower
bound on fairness, they calculate the best excess risk over
the solution without a fairness constraint, along with a data
dependent theoretical limitation between fairness and accu-
racy. We extend on these results and show that if the fairness
frontier is steep, then PEF achieves better efficiency than
existing constrained optimization methods.

(Beutel et al., 2017) models the problem of debiasing as a
multi-task learning problem where the model is penalized if
the shared hidden layers of a neural network can be used to
predict the sensitive variable accurately. One potential issue
of the model is that it could result in propagating bias in the
reverse direction.

There are many fairness definitions proposed in literature,
but we address one such definition in this work, Equality
of Odds. (Hardt et al., 2016) We say that a predictor Ŷ
satisfies equalized odds with respect to protected attribute
A and outcome Y , if Ŷ and A are independent conditional
on Y .

P (Ŷ = ŷ|Y = y,A = m) = P (Ŷ = ŷ|Y = y,A = n)

8Y, 8m,n 2 A

(Pleiss et al., 2017) and (Raghavan et al., 2018) prove that
equality of odds can’t be achieved by two models on sep-

arate groups which are calibrated , unless both the models
achieve perfect accuracy. The main intuition behind this pa-
per is the hypothesis that similar impossibility regimes exist
in real life scenarios, especially when multiple subgroups
exist. We explore how to avoid unintentional performance
degradation in such cases, which only achieve fairness by
trivially reducing accuracy to random performance for all
subgroups.

Pareto Efficiency is a state where resources are allocated
in which it is impossible to redistribute resources to make
any one criterion or party better off without making another
criterion worse off.

We seek to mitigate some of the weaknesses described above
by employing Pareto-Efficiency or Pareto Optimality. With
respect to fairness, (Agarwal et al., 2018) explores the Pareto
optimality between overall accuracy and violation of fair-
ness constraints. Although such a comparison is important
and in many cases necessary by a domain expert, it is a
measure of two separate metrics and needs to be carefully
evaluated. However in our work, we focus on the trade-offs
between the performance of various comparable subgroups
that can be easily compared simultaneously on the Pareto-
optimal curve. To the best of our knowledge, this is the
first work which extends strong theoretical results of Pareto-
Efficiency to achieve better subgroup performance in data
distributions with high disalignment between fairness and
accuracy.

3. Methodology

3.1. Overview

In order to illustrate the benefits of Pareto-Efficient Fairness,
consider a binary classification task X ! {0, 1}, where X
is a continuous scalar feature. We define a set of two groups
G = {A,B} with membership over a sensitive variable set
S. Figure 1 shows the scatter plot of achievable accuracy
metrics over groups A and B for classifiers h 2 H of the
form

h(X) =

(
0, if X < t

1, otherwise
(1)

by varying values of t. The expected accuracy for a uni-
formly random population (shown as the red point in Fig-
ure 1) over a class-balanced set of both groups A and B
is .5, if the target label is predicted by flipping a fair coin.
We denote the best *known* accuracies over all operating
points for A and B, given the set of classifiers H, as opta
and optb. Equality of odds would require that the classifier
operate on the x = y line.

However, if the objective is to improve the performance
of protected groups to the meet the levels of the highest
performing groups as motivated by policies around affir-
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mative action (Foster & Vohra, 1992) and recent works in
fairness literature (Buolamwini & Gebru, 2018), then choos-
ing points on the line x = y might not be desirable. Instead,
choosing one of the Pareto-Efficient points (blue) may be
a more desirable solution in that it will increase the accu-
racy of both groups A and B compared to a solution using
equalized odds.

In our employment of Pareto-Efficient subgroup fairness,
we define the Pareto-Efficient points as the set of points for
which there does not exist another point, which is better
performing across all the sensitive groups.

One possible pitfall of such a definition is that points opta or
optb could be selected as a Pareto-Efficient solution. Both
are trivially Pareto-Efficient points, since there are no other
points which performs better across all groups, but clearly
are unequal across subgroups. In order to avoid disparity in
the Pareto-Efficient Fairness penalty across subgroups, we
minimize the variance of penalty across subgroups while
choosing among the Pareto-Efficient points. Formally, for a
set of Pareto-Efficient thresholds: tPE , performance metric
for g: F [g] and optimum performance metric across all
operating points for group g: Fopt[g], we intend to find,

tfair = min
tPE

�2
g(✏g) (2)

where ✏g = 1� F [g]

Fopt[g]
, �g is the stddev across groups

(3)

We would choose a Pareto-Efficient threshold empirically
using the minimization criteria,

tPE = min
t

k✏gk1 (4)

These two minimization criterion might not concur, hence
we need a Lagrangian approximation which combines the
two as follows:

tPE�fair = min
t

↵k✏gk1 + (1� ↵)�2
g(✏g) (5)

The choice of ↵ is domain dependent with the nuanced point
that ↵ is defined relative to the respective heuristic pseudo-
optimum performance of groups, which is central to the
argument of Pareto-Efficient Fairness. This is demonstrated
when ↵ = 0 and the variance of the pareto-errors ✏g is mini-
mized, which is not the same as equality of odds. Similarly,
when ↵ = 1, we minimize the sum of absolute pareto-errors,
which is a different formulation than the unconstrained opti-
mization in (Zhao et al., 2017)

These criterion can be used as a regularizer in a Lagrangian
dual formulation similar to (Eban et al., 2016) with the
appropriate loss weight (�), along with a cross entropy clas-
sification loss: Lce(o, ô) to yield

Figure 1. Illustration of Pareto Efficiency Fairness within the fair-
ness relaxation bounds (in gray) in a dataset with 2 groups. A
scatter plot of subgroup level accuracies that are achievable by
models are plotted here. The line denotes permissible accuracies
when strict equality constraints are enforced. The most accurate
fair model has subgroup accuracies of (0.6, 0.6). If accuracy for
each of the individual groups is separately maximized, we would
choose points opta = (0.83, 0.55), and optb = (0.63, 0.77) re-
spectively. However, PEF will choose among the points on the
Pareto-front (in blue), the point PE = (0.71, 0.63), which mini-
mizes variance of the Pareto loss across subgroups.

Lp(o, ô) = Lce(o, ô)) +
X

g2G

(�(↵k✏gk1 + (1� ↵)�2
g(✏g))

3.2. Pareto-Efficient Algorithm

In order to obtain a heuristic for the pseudo-optimal sub-
group performance, we obtain a baseline metric based on
the performance of the same classifier set trained purely on
individual subgroup data. Although this may not be the best
estimate of a subgroup population’s true optimal, we avoid
transfer learning during initialization as majority subgroups
benefit from a large dataset and minority subgroups can be
penalized (Papernot et al., 2016). Instead, we propose an
iterative approach where the Pareto-Loss heuristic is up-
dated in each iteration if the optimal subgroup performance
was bettered by a jointly trained model. In the evaluation,
we present results from the heuristic initialized with the
separately trained subgroups. Once we obtain the heuris-
tic pseudo-optimal performances, we input them into the
jointly trained Pareto bias mitigation algorithm (Algorithm
1), which minimizes the loss Lp mentioned above for every
batch. We further ensure that the batch used at every loss
minimization is representative of the subgroup distribution
present in the original dataset.

Our work introduces the notion of a “potentially optimal”
performance for each of the sub-population subgroups. We
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Algorithm 1 Iterative Pareto-Efficient Bias Mitigation
G = P(S) where S is the membership set of sensitive
variables
Fopt(g) = eval(Mg, Dg) 8g 2 G, Mg is the model
trained and evaluated on only data with subgroup g: Dg

F = {}
while F is {} or 9g 2 G,F [g] > Fopt[g] do

Train M to minimize Lp for the updated Fopt

F [g] = eval(M,Dg), 8g 2 G
Update Fopt[g] = F [g] if F [g] > Fopt[g]

end while

argue that at a minimum a classifier aiming towards fair-
ness should be able to reflect the underlying sampled sub-
populations distributions as accurately as possible. For ex-
ample, in a synthetic data distribution, this pseudo-optimal
performance can be calibrated differently for each subgroup
as seen in Table 2. In this scenario, there are subgroups that
do not perform better, independent of the threshold chosen,
whereas there are two other subgroups that perform better
for higher values of the threshold. Hence, we achieve equal
performance when all subgroups perform equal to random
chance. But, choosing to minimize Pareto loss is better
as those Pareto-optimal points dominate the result which
minimizes the parity error across all subgroups.

This approach is similar to current avenues of research
which highlight the benefits of fairness through awareness.
In this interpretation of fairness, it is acceptable to under-
stand the differences between various subgroups’ perfor-
mance in the dataset and operate in a way to correct as
opposed to fairness through blind application.

4. Evaluation

We compare our approach with the scaled versions of group
fairness (Zhao et al., 2017) and (Beutel et al., 2017) for
subgroups. In (Zhao et al., 2017), the authors optimize for
overall accuracy while constraining for equality across false
positive rates, but the method is also applicable to other
measures of performance. Our implementation employs
Lagrangian relaxation to add a penalty for each subgroup
that deviates from the overall accuracy. In (Beutel et al.,
2017), Beutel et al, the authors implement bias mitigation
as a way of erasing the sensitive group membership by
back-propagating negative gradients in a multi-headed feed-
forward neural network. We scale the same for subgroups
defined over multiple sensitive variables, where the auxil-
iary head aims to predict the subgroup class (multi-class
classification instead of binary). We evaluate a comparison
of the techniques for both synthetic toy data and the UCI
Census Adult dataset. The UCI Census Adult dataset pre-
dicts income category based on demographic information,

Table 1. UCI Adult dataset with bias mitigation algorithms
Model Accuracy FPR FNR Discrepancy Pareto Loss

Baseline (no bias loss) 0.630 0.253 0.747 0.199 0.016
Minimize Discrepancy 0.619 0.283 0.712 0.167 0.133
Adversarial Loss 0.648 0.224 0.769 0.226 0.077
Pareto-Efficient Loss 0.678 0.165 0.830 0.250 0.000

Table 2. Subgroup performance on UCI Adult dataset
Model Subgroup 1 2 3 4 Pareto Loss

Baseline (no bias loss) 0.890 0.883 0.818 0.784 0.016
Minimize Discrepancy 0.853 0.856 0.806 0.778 0.133
Adversarial Loss 0.882 0.872 0.824 0.780 0.077
Pareto-Efficient Loss 0.935 0.915 0.844 0.797 0.000

Subgroup Pareto Frontier 0.934 0.894 0.815 0.783 N/A

where the sensitive variables selected for experiments are
set as gender and race.

4.1. UCI Census Data

Table 1 shows the Pareto-loss, i.e how much each subgroup
deviates from the pseudo-optimal of the respective subgroup
for the UCI Census Adult dataset. We see that our approach
achieves zero Pareto-Loss, while (Zhao et al., 2017) and
(Beutel et al., 2017) have non-zero Pareto losses. (Zhao
et al., 2017) performs well in terms of lowering the sum of
absolute discrepancy of all subgroups’ accuracy from the
overall accuracy. This is expected as (Zhao et al., 2017)
chooses an operating point closest to equal accuracy, when
exact equality isn’t possible. (Beutel et al., 2017) arrives at
an operating point which suffers from non-zero discrepancy
and Pareto-loss. Table 2 clarifies why our approach arrives
at a better operating point. We can see that each of the
subgroups have better individual accuracy than all the other
approaches, some even better than the baseline. This con-
firms empirically that our objective function matches (and
sometimes exceeds due to transfer learning) the heuristic
pseudo-optimal performance for each subgroup (quoted in
the last row of Table 2).

5. Conclusion

In this paper, we establish Pareto-Efficient Fairness over
subgroups improves overall accuracy as well as subgroup
performance metrics on synthetic and UCI Adult datasets.
Based on theoretical results, we show that PEF is more
efficient in datasets with high skew and converges to a Pareto
Optimal point which dominates all existing methods which
enforce a strict constraint.
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1. Properties of Pareto-Efficient Fairness
As noted in Section 3, let the PEF loss over M subgroups
be defined as Lp(o, ô) = Lce(o, ô) + �

PM
i=0(↵kL(i)k1 +

(1 � ↵)kL(i) � ✏k2), where o, ô denotes the true and pre-
dicted target variable, Lce denote the cross entropy loss,
L(i) denote the pareto loss measured for group i, � and ↵

are hyperparameters which control the tradeoff.

Let H(⌧) denote the disalignment between the target and
the subgroup for the fairness constraint, it is given that
H(⌧) = EX [(c� ⌘(X)).(f⇤(X)� [[⌘(X) > c)]])] where
c is the threshold for classification, ⌘(X) is the class prob-
ability function for the target and f

⇤ denote the Bayes-
optimal classifier which minimizes the fairness constrained
loss function.

If H(⌧) = 1 � �, for � ! 0, then the PEF loss Lp will
converge to a Pareto-optimal point of accuracies F̂ =
[f̂1, f̂2, ..f̂M ] for M subgroups, such that for all accura-
cies obtained by strictly enforcing the fairness constraint,
F = [f1, f2, ..fM ], we have f̂i � fi.

In the remainder of the section, we outline key results about
the PEF algorithm’s convergence properties, its capacity to
discover Pareto curves of subgroup performances and pareto
efficiency that are part of the theorem.

1.1. Convergence

We first present the lemma derived for sparse lasso reg-
ularizers (Vincent & Hansen, 2014), that show the con-
vexity of block regularized minimizers, which also min-
imize the loss function under model parameter (�) con-
straints. If f is a convex, twice-differentiable loss function,
then the sparse lasso minimizer, min( f + ��), such that
�(�) = (1� ↵)k�k2 + ↵|�|, is also convex.

Moreover, it has be shown that the convexity argument holds
even when � 2 R

n, as long as the block separability of �
holds, i.e = �(�) =

PM
i=0 �

(i)(�(i)), where i
th component

of � denotes the i
th subgroup’s performance’s deviation
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from their group optimal performance. Hence, adopting a
block level gradient descent, where the gradients are back-
propagated only after each batch’s block performances are
computed has been shown to converge in (Tseng & Yun,
2009).

1.2. Discoverability

The above section shows that the Pareto-Efficient Fairness
loss indeed converges to a minima with the use of a con-
vex loss function. However, it remains to be seen that the
minima obtained is a pareto-optimal operating point. For
this, we now provide insights behind the choice of the reg-
ularizers in Pareto-Efficient Fairness, based on the theory
of multiple objective optimization (Giagkiozis & Fleming,
2012). Specifically, we use the theory of decomposition
based methods which employ a scalarization technique to
convert M multiple objectives - f1.f2..fM into a single
objective using a Weighted Metric method. Here, the dis-
tance of each objective from a Utopian reference point is
measured and a corresponding lp norm is minimized, i.e.
min(

�PM
m=1wm|fm(x)� z

⇤
m|p

� 1
p )

The knowledge of a Utopian reference point z⇤ is usually
based on prior domain knowledge. In our adaptation for
Pareto-Efficient Fairness, we have initialized z

⇤ to a vector
of subgroup performances when trained exclusively on the
subgroup’s data alone.

Using the above Weighted Metric method provides the abil-
ity to discover both convex and non-convex pareto curves
as shown in (Giagkiozis & Fleming, 2012). Similarly, the
l1 norm has the ability to discover all points on the Pareto
front for some weight vector as stated in the lemma below.
(Miettinen, 1999)

Let x be a Pareto-optimal solution, then there exists a pos-
itive weighting w vector such that x is a solution of the
weighted Tchebycheff problem
min(

�
max

M
m=1wm|fm(x) � z

⇤
m|

�
) , where the reference

point z⇤ is the utopian objective vector.

However, it can be seen that as p ! 1, the objective func-
tion becomes non-differentiable and hence it is of interest
to us that we choose the minimum possible p for which the
above statement still holds. While a universal result for all
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Figure 1. Illustration of preference of Pareto loss over Parity loss.
In this synthetic data scenario, two subgroups perform at ran-
dom accuracy level, regardless of the threshold chosen and two
other subgroups have higher accuracies when the thresholds are
increased. The Pareto loss depicts how far each of the subgroups
are from their corresponding optimal accuracy levels. Parity loss
depicts the discrepancy between the subgroups accuracies. Parity
loss is minimized when all subgroups perform at random accu-
racy levels, whereas Pareto loss is minimized when all subgroups
achieve their optimal accuracies and hence is a better alternative.

Pareto curves is still unknown, a significant result from (Gi-
agkiozis & Fleming, 2012) is presented below, if the Pareto
curve is known to be continuous.

If the Pareto-front geometry is continuous, where
f1, f2, ..fM denote the M objectives to be optimized which
can be parameterized as f

p1
1 + f

p2
2 + .. + f

pM

M = C,
such that pi > 0, for a constant C, then for the choice of
p � max(p1, p2, ...pM ), the same guarantees of discover-
ability from the Tchebycheff problem will hold when using
the scalarization, min(

�PM
m=1wm|fm(x)� z

⇤
m|p

� 1
p )

In real datasets, the number of points observed on the
Pareto front is finite, and hence we usually make the as-
sumption that the Pareto curve is extrapolated using the
observed points. Under this assumption, the above lemma
would hold on the continuous extrapolated Pareto curve.
Also, in our case where we optimize subgroup performance,
we know that each fi 2 [0, 1], if accuracy (error) or any
other performance metric is scaled. With this tight bound
on the performance values, the condition to be satisfied,
f
p1
1 + f

p2
2 + ..+ f

pM

M = C, becomes trivial to be satisfied
empirically under the constraints of numerical precision.
For all pi = ✏, such that ✏ ! 0+, we have that fpi

i ! 1 for
fi(x) 2 [0, 1]. This is evident as x

✏ ! 1, for x > 0 and
limx!0+x

x = 1. Since all boundary conditions are also
bounded by the limit of 1, we can safely assume C = M

and satisfy the condition for most practical purposes, as
illustrated in Figure 2. Thus, for choice of p > ✏, i.e p =

1,2,3.., we see that our weighted metric method produces
all discoverable points on the Pareto curve and hence we
can be fairly guaranteed (under the errors of numerical pre-
cision) that the minimization procedure would find a point
on the Pareto curve. Note that the weights of the weighted
metric method in our case is based on the fairness criterion
and hence all set to 1. This will further impose the fair-
ness constraints during the discovery of points on the Pareto
curve.

Figure 2. Pareto geometry condition is satisfied for discoverability
of all Pareto-Optimal points for Pareto-Efficient Fairness for low
values of p, under the errors tolerated by numerical precision

1.3. Efficiency

In this subsection, we provide an analysis of when we ex-
pect PEF to outperform standard notions of fairness, like
equality of opportunity, i.e when PEF has higher efficiency.
(Menon & Williamson, 2018) defines the fairness-frontier
which intuitively measures the trade-off between utility (u)
(accuracy) and fairness (⌧ ) in the distribution inherent to the
problem, rather than one owing to the specific technique one
uses, no matter how sophisticated it may be, by computing
the fundamental limits of what accuracy is achievable by
any classifier. Specifically, the frontier is computed using
cost-sensitive measure which quantifies the alignment be-
tween the Bayes-optimal plug-in classifier thresholds for
the outcome and sensitive attribute distributions. [Proposi-
tion 8 in (Menon & Williamson, 2018)]. As the absolute
gradient of the fairness frontier increases near the desired
fairness constraint, the efficiency gained from using PEF is
monotonically non-decreasing.

Specifically, if the fairness frontier shows that for small
concessions of the fairness requirement (�⌧ ), the limit of
accuracy achievable is much higher (�u), then we have a
possibility that PEF would outperform by choosing such a
point on the fairness frontier as shown in Figure ??. How-
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ever, this is a necessary but not sufficient condition. PEF
would choose such a point only if the new point is Pareto-
dominating the subgroup accuracies of the operating point
without the �⌧ fairness concession. The amount of con-
cession in Pareto-dominance that we are willing to allow
is domain-dependent and can be controlled by tuning the
parameter � in the PEF loss function. Hence, PEF would
perform better in conditions where the fairness frontier is
steep around the fairness requirement and potential increase
in accuracies are achievable in a Pareto-dominant manner.

References
Giagkiozis, I. and Fleming, P. Methods for many-objective

optimization: an analysis. 11 2012.

Menon, A. K. and Williamson, R. C. The cost of fairness
in binary classification. In Proceedings of the 1st Con-
ference on Fairness, Accountability and Transparency,
volume 81 of Proceedings of Machine Learning Research,
pp. 107–118, New York, NY, USA, 23–24 Feb 2018.
PMLR.

Miettinen, K. Nonlinear multiobjective optimization, 1999.

Tseng, P. and Yun, S. A coordinate gradient descent method
for nonsmooth separable minimization. Mathematical
Programming, 117(1):387–423, Mar 2009. ISSN 1436-
4646. doi: 10.1007/s10107-007-0170-0. URL https:
//doi.org/10.1007/s10107-007-0170-0.

Vincent, M. and Hansen, N. R. Sparse group lasso and high
dimensional multinomial classification. Comput. Stat.
Data Anal., 71(C):771–786, March 2014. ISSN 0167-
9473. doi: 10.1016/j.csda.2013.06.004. URL http://
dx.doi.org/10.1016/j.csda.2013.06.004.

https://doi.org/10.1007/s10107-007-0170-0
https://doi.org/10.1007/s10107-007-0170-0
http://dx.doi.org/10.1016/j.csda.2013.06.004
http://dx.doi.org/10.1016/j.csda.2013.06.004

