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Abstract

Lack of food security persists in many regions
around the world, especially Africa. Tracking and
predicting crop yields is important for supporting
humanitarian and economic development efforts.
We use deep learning on satellite imagery to pre-
dict maize yields in six African countries at the
district level. Our project is the first to attempt this
kind of prediction in Africa. Model performance
varies greatly between countries, predicting yields
in the most recent years with average R? as high
as 0.56. We also experiment with transfer learn-
ing and show that, in this data sparse setting, data
from other countries can help improve prediction
within countries.

1. Introduction

Improving food security and decreasing hunger by 2030
are key sustainability goals for the United Nations (Nations,
2018). However, the number of people without adequate
food supply has been rising globally since 2015. In Africa,
22.7% of people are undernourished—significantly worse
than the global average. The situation is especially dire in
Sub-Saharan Africa, where it is estimated that 224 million
people are undernourished (FAO, 2017).

Agricultural monitoring, and specifically the monitoring of
crop yields, is vital in assessing food security in a region
(Jones & Young, 2013). However, in developing countries,
collecting high quality agricultural data can be expensive
and difficult (Keita, 2019). In this paper, we address this
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problem by using publicly available remote sensing data to
predict maize yields in six different African countries.

We use county level maize yield data from Ethiopia, Kenya,
Malawi, Nigeria, Tanzania, and Zambia. Our remote data
consists of satellite images from the MODIS collection
(DAAC, 2018). To overcome sparse label data, we utilize a
dimensionality reduction technique introduced by You et al
(You et al., 2017). We convert raw images into histograms
of pixel counts, which we then process using a LSTM-based
deep learning model to predict crop yields. We also incor-
porate a Gaussian Process Layer to improve accuracy (You
etal., 2017).

Our model performance varies by country. Testing on the
last 4 years for Kenya, Tanzania, and Zambia, we achieve
average R? values from .50 to .56. Our models perform
worse on Ethiopia, Malawi, and Nigeria, with average R?
values from -0.60 to 0.13. Combined models, where all
countries are trained collectively, also show promising re-
sults with R? as high as 0.63 for randomized test sets. For
some countries, the predictions from this model are more
accurate than those made by individual in-country models.
This suggests that models for countries with sparse training
data can be improved by using out-of-country data.

2. Related Work

In early attempts to predict crop yields using remote sensing
data, models relied solely on features such as normalized
difference vegetation index (NDVI) and enhanced vegeta-
tion index (EVI) as inputs. Using this approach, Bolton
and Friedl (2013) were able to predict maize yields in the
United States with an R? of 0.69. More recently, deep
learning models have been used to estimate yields. Kuwata
and Shibasaki (2015) used a CNN with MODIS data to
achieve an R? of 0.65 when predicting maize yields in Illi-
nois. In a 2017 paper predicting soybean yields in the U.S.,
You et al. implemented a novel dimensionality reduction
technique, which we implement in this paper, to allow for
model generated features. They also incorporated a Gaus-
sian Processing Layer which further improved performance,
and were able outperform traditional remote sensing based
methods by more than 30% in terms of Root Mean Square
Error (RMSE), with values ranging from 0.31 and 0.37
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mt/ha (2017).

All of the aforementioned papers focus on the United States,
where the ground truth yield data is reliable and easily ac-
cessible. There has been some work done trying to predict
yields in developing countries. Wang et al. (2018) trained
deep learning models using MODIS data to predict soybean
yields in Argentina and Brazil. They used the same dimen-
sionality reduction technique as You et al. and achieved R?
as high as 0.57 for Argentina and 0.66 for Brazil. We are
not aware of any projects of this kind done in Africa.

3. Data

Our label data consists of yield data provided by the US-
AID Famine Early Warning System Network (FEWS NET)
(Gary Eilerts, personal communication) at the Admin 2 (i.e.
district) or Admin 1 (i.e. province) level for 6 countries.
Yield is defined as metric tons of crop per hectare of land.
Each label corresponds to a harvest season for a specific
year. We remove data points with missing entries, yield
outside of two standard deviations, and area planted less
than 5000 hectares. As shown in Table 1, dataset size and
yield distribution varies significantly by country.

Table 1. Yield distribution by country (mt/ha)

Yield Distributions by Country

Country Mean Std. Deviation Dataset Size
Ethiopia  2.05 0.73 473
Kenya 1.52 0.95 532
Malawi  2.12 1.13 451
Nigeria 1.64 0.46 639
Tanzania  1.31 0.55 220
Zambia  1.77 0.89 1192

Our feature data consists of 500m resolution satellite images
provided by the MODIS satellite collection. Specifically,
we use all seven bands of the MOD09A1.006 Surface Re-
flectance data and two bands of the MOD11A2.006 Land
Surface Temperature data representing day and night tem-
perature (DAAC, 2018).

Because harvest seasons for maize differ between countries,
we use the UN Food and Agriculture Organization country
profiles to determine the length and time span for each
country’s growing season (FAO, 2018). We also validated
the season period by plotting how the mean temperature and
NDVI fluctuates over time.

There are some notable temporal trends in our label and fea-
ture data. We observe no significant trends between year and
average peak NDVI. However, for Ethiopia, Malawi, and
Zambia, there is a positive trend for yield over time. Other
countries show no noticeable yield trend. These trends,
shown in Figure 1, suggest that some temporal correction
will help produce accurate predictions in certain countries.
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Figure 1. Average NDVI and Yield Over Time for Ethiopia (or-
ange) and Kenya (blue) : There is a positive trend in yield over
time for Kenya that is not reflected in the remote sensing data,
while there is no such trend for Ethiopia.

4. Approach
4.1. Problem Setting

We attempt to predict crop yields for a specific region over
a given growing season and year. The feature space for each
model is a collection of spectral images C'. Each image [ in
C corresponds to a certain spectral band b and time step ¢.
Therefore, for each label y, we have the feature set:

{(Ibll...Ilfl)...(Il}n...I,fn)} =y

We restrict images to be centered around the month with the
peak NDVI over the course of the year. For our dataset, we
take three months before the peak and two months after the
peak to prioritize the growing period.

We train models for two kinds of splits: random and chrono-
logical. In the random splits, each pair (C, y) is randomly
split into training, validation, and testing with the sets hold-
ing 80%, 10%, and 10% of the data respectively. In the
chronological splits, we use data from the most recent year
as the test set. We measure our performance by averaging
over the prediction metrics for the most recent four years -
each year trained on all preceding years. This split is more
consistent with practical applications of this model, where
one would train on existing data and predict future yields.
Because many harvesting seasons have sparse labels, we
train and test on the season with most data for each country.

4.2. Baselines

Our baseline model uses ridge regression, which is linear
regression with L2 regularization. We use the surface re-
flectance and temperature data to generate features. From
the surface reflectance data, we calculate NDVI and EVI
values for each image over the course of the peak period. We
do the same thing with the surface temperature images, ex-
cept taking the mean pixel value for the images representing
day and night temperature. We also test a simplified model
with only two features: the highest average NDVI value and
the average temperature during the growing period.
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4.3. LSTM
4.3.1. DATA PROCESSING

Because the quantity of label data can be sparse, we use the
histogram dimensionality reduction technique detailed in
You et al. to combat overfitting. This technique assumes that
the location of each pixel value within an image [ is unim-
portant for this task relative to the quantity and distribution
of pixel values. Let ¢ represent the timestep for each image
over a given period. Each image I(*) has dimensions I"%>9,
where h and w are the dimensions and d is the number of
bands. In our model, d = 9, with 7 surface reflectance bands
and 2 surface temperature bands. We make the simplifying
assumption that each band d is independent from the others.
Then, for each d, we separate the pixel values into a his-
togram with b bins, where b is a hyperparameter. We use b
= 32. Therefore, we represent each I!) as a histogram h(*)
with shape b x d. We then stack each h for all ¢, resulting
in a 3D histogram H of shape T' x b x d, where T is the
number of timesteps for a datapoint, b is the number of bins,
and d is the number of bands (2017).

4.3.2. MODEL STRUCTURE

The full structure of our LSTM model is shown in Figure
2. For each histogram H, we flatten the feature in the bins
and bands dimensions, preserving the temporal structure of
the data. We feed the modified histograms into a LSTM
network, applying dropout at each timestep. The outputs
of the LSTM are then fed through two dense layers to out-
put the yield prediction. We run a random hyperparameter
search for each LSTM model. We use MSE loss, Adam
Optimization, and Xavier initialization.

Histograms

Flattened Dense layers

malrix

Figure 2. LSTM Model Structure (You et al., 2017). We feed a
flattened 3D histogram into a LSTM network. The outputs are
then fed into dense layers for prediction.

4.4. Gaussian Processing

There may be spatial and temporal trends in crop yield that
are not captured in the satellite features. We integrate spatio-
temporal features into our models using a linear Gaussian
Process, as done in You et. al (2017), to model these errors.

A Gaussian Process is a probabilistic model defined as a set

of random variables, f (sr:)x x> where a finite subset has the

joint Gaussian distribution

f(x) ~ GP(E[f(2)], cov(f (), I'(x)))

For our paper, we use the spatio-temporal data (coordinates,
years) for our covariance function, and use a variant of GP
that is linear in respect to the features extracted from our
deep model. The linear model is defined as

y(z) = f(z) + h(z)"8

where f(z) ~ GP(0,k(z,2')). The kernel function,
k(x,2'), is created using the spatial temporal features and a
squared exponential kernel, represented as

/ 2
o2 exp| — ||gloc _2920(:/ ||% _ ”gyear ;gyear/ ||2 +0_359.gl
2rloc 2ryear

The trailing term represents additional Gaussian noise, de-
fined as a product of the variance o2 and the Kroennecker
delta. h(-) is a set of basis functions from the last dense
layer of our deep model. Finally, 8 ~ N (w,oI), where
w are the trained weights from the final dense layer in our
model. 7,0y, 0c, Tioc; Tyear are hyperparameters, and we
train using log marginal likelihood.

5. Results and Discussion
5.1. In-Country Models

In-Country models are trained and tested on individual coun-
tries. We find a large amount of variability in the perfor-
mance of these models depending on the country. Our
results across models are presented in Tables 2 and 3. The
LSTM with Gaussian Processing consistently outperforms
our other models. This suggests that there is large variations
between yields over spatial and temporal dimensions.

5.1.1. RANDOM SPLITS

The performance of models trained and tested on random-
ized splits are shown in Table 2. The LSTM with Gaussian
Processing performs the best across metrics. These models
generally perform better than models trained on chronologi-
cal splits. However, randomized training and testing is not
a realistic problem. In a real world setting, models will
typically predict yields for the most recent year, for which
there is no training data available.

5.1.2. CHRONOLOGICAL SPLITS

While the LSTM and Baseline do not perform well overall
on Chronological splits, the Gaussian Processing improves
the results. The full results are displayed in Table 3. Our
models without any temporal features do poorly on countries
like Ethiopia, where there is a trend over time not captured
in the satellite data. Our frequent negative R? values for
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Table 2. Results by Country for Random Splits
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Figure 4. LSTM+GP Performance on Nigeria and Malawi:
Plots of yield vs prediction

Table 3. Results by Country for Chronological Splits

R2

Country Simple Ridge LSTM LSTM+GP
Ethiopia 0.09 0.49 0.48 0.74
Kenya 0.34 0.62 0.72 0.75
Malawi -0.01 -0.01 0.11 0.41
Nigeria 0.12 0.11 0.34 0.74
Tanzania  -0.16 -0.01 0.24 0.48
Zambia 0.22 0.42 0.55 0.62

Pearson’s r

Country Simple Ridge LSTM LSTM+GP
Ethiopia 0.39 0.75 0.76 0.86
Kenya 0.59 0.80 0.86 0.87
Malawi 0.34 0.37 0.46 0.66
Nigeria 0.41 0.40 0.60 0.87
Tanzania 0.38 0.53 0.61 0.70
Zambia 0.52 0.68 0.76 0.80

these models suggest overfitting. Figure 3 shows that while
the model with only satellite features is under-predicting due
to the increasing yield over time, the model with Gaussian
Processing is able to account for this trend.
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Figure 3. LSTM Performance on Ethiopia With and Without
Gaussian Processing: Plots of yield vs prediction

Our models perform significantly worse on Malawi and
Nigeria. There are a few possible causes for this. Malawi
has a relatively small dataset, which results in larger varia-
tion and noise between the training and testing data. Nige-
ria, on the other hand, has relatively small variance between
yields, which results in low RMSE values but also low corre-
lation scores. As shown in Figure 7, the Nigeria predictions
are concentrated while the Malawi predictions are more
widespread. This reflects how the model performance is
affected by the underlying distribution of data. There is
also the question of data quality. A recent study of the
Malawi Food Subsidy Programme showed that maize yield
numbers provided by the government are likely inaccurate
(Messina et al., 2017). This would explain our consistently
poor performance on Malawi across all models.

R2

Country Simple Ridge LSTM LSTM+GP
Ethiopia -141 -052  -0.35 0.13

Kenya 0.13 0.40 0.49 0.56
Malawi -0.03 -054 -0.29 -0.09
Nigeria -1.45 -3.44  -0.68 -0.60
Tanzania  0.03 -1.63 0.40 0.50
Zambia 0.23 -0.08  0.39 0.56

Pearson’s r

Country Simple Ridge LSTM LSTM+GP
Ethiopia  0.69 0.64 0.74 0.82

Kenya 0.42 0.69 0.82 0.82
Malawi 0.11 0.10 0.25 0.55
Nigeria 0.26 -0.03 0.40 0.53
Tanzania  0.38 0.11 0.74 0.80
Zambia 0.75 0.55 0.67 0.77

5.2. Transfer Learning

We also train our LSTM model on data from all six countries
to see how features learned from one country can help pre-
dict yield for another. We use the concatenated training data
of the random splits for training, and then predict upon the
test sets of individual countries. These results are presented
in Table 4. We opted not to use GP because we wanted to test
the transferrability of satellite features without the influence
of one country’s spatio-temporal features. The full model
achieves around 0.5 R? and 0.75 r when predicted upon the
combined test sets. Three countries achieve higher metrics
when trained on the combined model, with only Tanzania
showing a notable drop in performance, which suggests that
out-of-country features are improving the prediction.

6. Conclusion

We are able to predict yields in African countries with mixed
success. Over all countries and tests, the LSTM with Gaus-
sian Processing produces the best results. Using randomized
splits, all models achieve high levels of accuracy. With the
chronological splits, performance varies, possibly due to
differences in feature and label distribution and data qual-
ity. Our combined model shows that a collective model
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Table 4. In-Country vs Combined Model for Random Splits.

In-Country Combined

Country o2 . iZ .
Ethiopia | 0.48 | 0.76 | 0.63 | 0.80
Kenya | 0.72 | 0.86 | 0.68 | 0.84
Malawi | 0.11 | 0.46 | 0.36 | 0.60
Nigeria | 0.34 | 0.60 | 0.58 | 0.77
Tanzania | 0.24 | 0.61 | -0.96 | 0.42
Zambia | 0.55 | 0.76 | 0.49 | 0.71

performs competitively with in-country models, suggesting
that the model can learn important out-of-country features.

Overall our models show that it is possible to predict crop
yields using these methods at a relatively high level of ac-
curacy. The results from Gaussian Processing model also
emphasizes the importance of incorporating temporal spatial
features when predicting crop yields.

For future study, different architectures such as a CNN
model run on the histograms or the raw images may also
attain significant results.
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