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Abstract
In this work, we introduce a recently developed
early classification mechanism to satellite-based
agricultural monitoring. It augments existing clas-
sification models by an additional stopping prob-
ability based on the previously seen information.
This mechanism is end-to-end trainable and de-
rives its stopping decision solely from the ob-
served satellite data. We show results on field
parcels in central Europe where sufficient ground
truth data is available for an empiric evaluation
of the results with local phenological informa-
tion obtained from authorities. We observe that
the recurrent neural network outfitted with this
early classification mechanism was able to distin-
guish the many of the crop types before the end
of the vegetative period. Further, we associated
these stopping times with evaluated ground truth
information and saw that the times of classifica-
tion were related to characteristic events of the
observed plants’ phenology.

1. Introduction
The identification of crop types form space-born imagery
forms an important component of agricultural monitoring
at a global scale. Information obtained from satellite data
is often the only source of information to assess the state
national agriculture. This is particularly important in de-
veloping countries where agricultural production is rarely
monitored or controlled by central authorities. Crucial infor-
mation on the effect of droughts and shortages are typically
available after the end of the vegetative periods which may
be too late for effective countermeasures. Obtaining knowl-
edge about the expected crop type as early as possible with
space-born crop monitoring can play a significant role in
providing food security, preventing famine, and determining
policies for sustainable agriculture. Monitoring of vege-
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Figure 1: An example of the predictions of the early clas-
sification mechanism ŷ, pt = f(X→t).A binary stopping
decision tstop is sampled from the evaluated stopping proba-
bility pt. The upper illustration shows the Sentinel 2 time
series x based on which the class probabilities ŷ and the
stopping time tstop are produced.

tation has been an increasing focus of Earth observation
programs. NASA’s Landsat or ESA’s Sentinel satellites ob-
serve the surface of the Earth at weekly intervals at spatial
resolutions of 10-60m. This allows for regular observations
of comparatively small objects, such as field parcels. While
enormous quantities of data are collected, methods to extract
information, e.g., Torbick et al. (2018); Chen et al. (2018);
Rußwurm & Körner (2018), are often applied at later times
when the vegetative period has ended to ensure a certain
accuracy of the prediction. With the proposed early clas-
sification mechanism, we enable a generic multi-temporal
classification model to choose the time of classification tstop
sampled from a probability pt. Our results show empirically
that the classification stopped when sufficient information
has been observed to justify a confident classification, as
shown in an example in Fig. 1.
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2. Related Work
Multi-temporal approaches commonly rely on the classifica-
tion of the entire time series either using features extracted
from expert knowledge (Bailly et al., 2016) or data-driven
end-to-end learning (Sharma et al., 2018; Interdonato et al.,
2019; Rußwurm & Körner, 2018; Pelletier et al., 2019). Es-
pecially for seasonally variable classes, such as vegetation
monitoring or crop type mapping, region-specific expert
knowledge is used to restrain the period of the time series
to the period where the observed classes are deemed observ-
able, i.e., the growing season (Torbick et al., 2018; Chen
et al., 2018). Early classification is the task of predicting the
class of an incoming time series X = (x0,x1, . . . ,xT ) of
observations xt as early as possible. Common approaches
formalize a mixed cost function that could take into account
both earliness and accuracy, and optimizing this cost func-
tion or a surrogate of it (Dachraoui et al., 2015; Tavenard &
Malinowski, 2016; Mori et al., 2017). Recently, an end-to-
end fine-tuning framework has been proposed (Rußwurm
et al., 2019) to jointly learn (i) an embedding for partial
time series, (ii) a classifier and (iii) a stopping rule, where
both the classifier and the stopping rule are computed from
the embedding. We will use this formulation in this work
for the use-case of agricultural monitoring with a novel
loss function that allows jointly optimizing parameters for
classification model and stopping decision in one training
phase.

3. Methodology
Our model estimates classification scores ŷt and a prob-
ability of stopping pt at each time t. It is composed of a
feature extraction network whose output is ht = ffeat(X→t)
(Section 3.3) and two light-weight mappings for classi-
fication scores ŷt = fc(ht) and stopping probability
pt = fδ(ht) (Section 3.1). We denote vectors and ma-
trices by bold face and differentiate them by case. A dataset
D = {(Xi,yi)}Ni=1 with single example Xi ∈ R{T×D}
is composed of T D-dimensional observations where the
subscript is used to indicate time t. Temporal sequences up
to time t is denoted by an arrow, e.g., X→t, while predic-
tion scores are represented as vector ŷ ∈ RM of M classes
with the prediction score, i.e., the probability output by the
model. The probability of the correct class is denoted as ŷ+.

3.1. Early Classification Mechanism

First, we describe the temporal classification model that
evaluates a classification score ŷt = fc(ffeat(X→t)) at each
time t. This hidden feature vector ht = ffeat(X→t) is typ-
ically obtained as a latent representation after a series of
cascaded layers in deep classification models. Such mod-
els produce classification scores by applying a non-linear
mapping ŷt = fc(ht) = softmax (Θcht + bc). Since this

hidden state contains information of the predicted class it
encodes an internal representation of the classification con-
fidence. So, it can be potentially used as an input for the
decision of stopping the classification if enough data has
been observed. A loss function Lc(X→t,y) evaluates the
quality of the prediction compared to ground truth labels y.
Gradients of this loss are then back-propagated to adjust the
classification model parameters Θc ∈ RH×M , bc ∈ RM .
The number of hidden states H is a hyperparameter of the
model while M denotes the number of classes.

The early classification mechanism augments this classi-
fication model by an additional non-linear mapping pt =
fδ(ht) = σ(Θδht + bδ) with sigmoidal activation func-
tion σ(·) that produces a one-dimensional probability of
stopping pt. The parameterization Θδ ∈ RH×1, bδ of this
mapping, however, can not be adjusted from gradients of the
classification loss Lc directly. Hence, a new loss function
Lt(X→t,y) is required to adjust both Θδ, bδ and Θc, bc.

This earliness-aware loss function is then weighted by the
probability of stopping

P (t; δ→t) = pt ·
t−1∏
τ=0

1− pτ . (1)

at corresponding time t. To ensure that this probability will
sum to one, δt=T is set to 1 regardless of the last hidden
state hT . This mechanism utilizes information about the full
sequence at training time to restrain P (t; δ→t) and calculate
the training loss

L(x,y) =

T∑
t=0

P (t; δ→t)Lt(X→t,y) . (2)

At inference time when P (t; δ→t) cannot be normalized to
a probability, pt is used to sample a stopping time tstop. The
prediction ytstop

at this time is used to derive a classification
label for the time series and to assess the accuracy. Note
that we initialize the weights so that pt ≈ 0 to favor late
observations at the beginning of the training period.

3.2. Earliness Reward Loss Function

Inspired by existing works (Mori et al., 2017; Tavenard &
Malinowski, 2016; Rußwurm et al., 2019), we employ a loss

Lt(X→t,y;α) = αLc(X→t,y)− (1−α)Re(t, ŷ+
t ) (3)

α-weights a classification loss Lc(X→t, y) with a earliness
reward term

Re(t, ŷ+
t ) = ŷ+

t

(
1− t

T

)
. (4)
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Figure 2: Schematic illustration of the multi-layer long
short-term memory classification model equaipped with
tho linear mappings for the class probabilities ŷ and the
stopping probability pt.

This term linearly scales the potential reward for earlier
classifications

(
1− t

T

)
. We remind that ŷt is the prediction

of the network at time t and that ŷ+
t is the probability of

the annotated class. This rewards the classifier only for an
early classification if the correct class has been predicted at
a reasonable accuracy. By combining Eqs. (2) to (4) we see
that three terms influence the earliness reward. These are
the probability P (t; δ→t), the evaluated classification score
of the correct class ŷ+

t and a linear scaling term
(
1− t

T

)
that rewards earlier classifications.

3.3. The Early Classification LSTM Network

To test this early classification mechanism on a real-world
remote sensing vegetation dataset, we implemented a
light-weight multi-layer long short-term memory (LSTM)
(Hochreiter & Schmidhuber, 1997) recurrent network, as
this architecture has shown good results in similar use-cases
in recent studies (Rußwurm & Körner, 2018; Interdonato
et al., 2019; Sharma et al., 2018). Figure 2 shows a de-
tailed representation of the employed gated recurrent neural
network architecture with the previously described early
classification mechanism. The input vector xt ∈ Rd at
time t is first z-normalized by mean and variance param-
eters using layer normalization (Ba et al., 2016), which
are computed from the training set. The normalized rep-
resentation is then provided to L cascaded LSTM layers
hlt = lstml(hl−1

t ,hlt−1). We denote the l-th layer in the
network as a raised index. Each of these gated recurrent
layers evaluates a feature representation hlt based on two
hidden representations: one at the current time of the pre-
vious layer hl−1

t and one of the same layer at the previous
time step hlt−1. Long short-term memory cells additionally
utilize an internal cell state clt to store long-term information,
as indicated by the circular connection in the illustration.

The last layer-normalized hidden representation ht then
computes class prediction scores ŷ for each class and the
stopping probability pt, as described in Section 3.1.

4. Results and Experiments
To test the early classification mechanism, we obtained the
label and geometry information of 40k field parcels from
local authorities of the 2018 season in central Europe. Over
this region we acquired all available Sentinel 2 images from
Google Earth Engine (Gorelick et al., 2017). All D = 13
spectral bands located within one field parcel were mean-
aggregated to a feature vector xt, as shown in Fig. 1. From
the available satellite observations, we randomly choose
T = 70 times to introduce a variance to the data samples
and prevent overfitting. Geographic parcels are known to
be spatially autocorrelated due to their proximity to each
other (Tobler, 1970). Hence, we avoid a field wise random
partitioning to training, validation and evaluation partitions.
Instead, we group the area of interest first in spatially sepa-
rate regions and then assign all fields within one region to
the respective partition, as suggested by Jean et al. (2018);
Rußwurm & Körner (2018).

We determine a set of optimal hyperparameters for the clas-
sification model by training without earliness mechanism on
standard cross-entropy loss L(x,y) = 1

T

∑T
t=0− log(ŷ+)

with equal weight over all observations. For the weight
updates, we used the Adam optimizer (Kingma & Ba, 2014)
and dropped-out connections between recurrent layers at
50% probability and a batch size of 1024. We searched
over the number of recurrent layers L ∈ {1, 2, 3}, the size
of the hidden dimension H ∈ {64, 128, 256, 512}, and the
learning rate ν ∈ {0.1, 0.01, 0.001} for 30 epochs. The
parameters L = 4,H = 64, ν = 0.01 that achieved best
accuracy on the validation were used throughout this work.
When training the model from scratch, we favor initially
late classifications with pt ≈ 0. To achieve this, we initial-
ize the bias term pt with a negative non-zero mean normal
distribution bδ ∼ N (µ = −0.2,σ = 0.1). The training
of one model took approximately ten minutes on a NVIDIA

GEFORCE GTX 1060.

4.1. Qualitative Example

We illustrated the early classification results qualitatively
in Fig. 1 on a classification example using raw Sentinel 2
top-of-atmosphere reflectance data gathered over the year
2018. In this multi-temporal classification task, we estimate
classification scores ŷt for each evaluated class based on
observed data X→t at each time t. In the example, we
can see that the model initially predicts randomly from the
January to March period. Then some classification-relevant
features are observed, which initially mislead the classifier
to false predictions in the April period. Finally, the correct
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α accuracy t̄stop precision recall f1 κ

.0 .25± .22 .10± .17 .19± .20 .25± .17 .16± .20 .12± .19

.2 .81± .03 .40± .02 .70± .01 .74± .01 .71± .01 .71± .04

.4 .80± .09 .47± .03 .71± .02 .74± .01 .71± .02 .71± .10

.6 .85± .02 .88± .07 .73± .04 .74± .03 .73± .03 .77± .03

.8 .84± .01 .93± .05 .72± .02 .75± .01 .73± .02 .76± .02
1.0 .83± .03 1.00± .00 .72± .03 .75± .01 .72± .03 .75± .04

Table 1: Varying the weighting factor α for early reward
loss formulation (Section 3.2).

class is assigned the highest prediction score from May
onwards. Early classification augments this classification
scheme by estimating a stopping probability pt out of which
a stopping time tstop is sampled. This stopping decision
serves as an indication if a sufficient amount of data has
been observed and no further data is required to allow for a
confident classification.

4.2. Quantitative Accuracy vs Earliness Analysis

In Table 1, we quantitatively evaluated the effect of the
trade-off parameter α on the classification performance on a
series of accuracy metrics. We trained models with different
weight initializations and batching sequences three times
to assess the stability of the training process under a range
of trade-off parameters α ∈ {0.2, 0.4, 0.6, 0.8}. For each
α we report a series of accuracy metrics and the averaged
time of classification t̄stop = 1

N

∑N
i=0 tstop normalized as

fraction of the total sequence length. The overall accuracy
describes the parcel-wise ratio of correctly positive and
correctly negative examples in relation to the total number of
samples. Precision, recall and their harmonic mean f1-score
are calculated on a class-wise basis which is less sensitive
to the frequency of samples per classes compared to overall
accuracy or the mean time of classification t̄stop. We also
report the kappa metric κ (Fleiss et al., 1969), as it is popular
in the remote sensing community and similarly accounts
for imbalanced class distributions by normalizing the score
with a probability of random prediction. The early reward
loss function was in terms of achieved accuracy resilient to
the choice of α. This becomes apparent as the classification
accuracies remained stable throughout the evaluated ranges
of α.

4.3. Class-wise Analysis of Stopping Times

Next, we examine the stopping times per class and evaluate
if these are related to phenologically characteristic events
of the crop classes. We show the distribution of stopping
times of all field parcels per individual class as boxplots in
Fig. 3. The distributions over stopping times vary for each
of the respective classes. For instance, the quartiles of the
corn distribution is narrow which means that 50% of the ob-
served parcels are identified within one to two weeks, while
crop types, such as barley or meadows are spread over one
month. One can observe that the stopping times generally

January March June September December

meadows

winter barley

corn

winter wheat
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clover
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vegetative season

stopping date tstop

Figure 3: Plot of distributions of the stopping times grouped
by individual classes. The stopping times for each class
follows a different distribution. The prediction for some
classes, e.g., barley, are on median earlier than the others,
e.g., corn or wheat, that are stopped at a later. The evalu-
ated stopping times are correlated with actual phenological
information, such as the vegetative season (shaded in blue)
or the date of harvest ( ) provided by local authorities.

correlate with the vegetative period (shaded in blue) and
the harvest times (marked by triangle ). We obtained
these dates from local authorities to be able to assess the per-
formance of the early classification mechanism objectively.
Note, however, that no region-specific expert knowledge is
required for evaluating the stopping probabilities. Hence,
the shown correlation originates solely from the observed
satellite data which can be obtained globally. Overall, we
can observe that our early classification model decided to
stop the classification before the end of the vegetative period
for a majority of field parcels. These results demonstrate the
potential of early classification for agricultural monitoring
where a confident classification decision can be determined
independently from local expert knowledge and often before
the end of the vegetative season.

5. Conclusion
In this work, we introduced a novel end-to-end trainable
early classification mechanism for satellite-based agricul-
tural monitoring. It can augment any multi-temporal clas-
sification models that evaluate a hidden representation at
each time. Further, we analyzed the stopping times for
the individual vegetation classes. Here, we saw that the
parametrization of the stopping mechanism for each class
was learned at different times and that the final times of stop-
ping followed distinct distributions from crop type to crop
type. We compared these evaluated stopping times with phe-
nological and ontological information from local authorities
and saw that many field parcels could be classified before
the end of the vegetative period which is the usual end time
of classification for regular crop type mapping approaches.
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