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Abstract

The Global Burden of Disease Study identifies
outdoor fine particulate matter (PM2.5) as the
eighth leading risk factor for premature mortality
globally. As such, understanding the global distri-
bution of PM2.5 is an essential precursor towards
implementing pollution mitigation strategies and
modelling global public health. In this paper,
we present a convolutional neural network-based
method for estimating outdoor PM2.5 concentra-
tions using satellite images centred on ground-
level measurements. Our method achieves a root
mean square error of 13.01 µg/m3 on the test set,
which is comparable to current state-of-the-art sta-
tistical models, but relies only on satellite images
as input. The model offers a fast, cost-effective
means of estimating global PM2.5

1. Introduction
Exposure to ambient fine particulate matter (PM2.5) is esti-
mated to cause nearly three million premature deaths annu-
ally (Stanaway et al., 2018), leading to substantial loss of
healthy life years and a global healthcare burden measured
in billions of dollars each year (Landrigan et al., 2018). Bet-
ter estimates of global PM2.5 are needed to help inform
pollution mitigation strategies and research.

Currently, ground-level PM2.5 measurements are very costly
to obtain. As such, exposures in locations without measure-
ments are typically estimated using statistical methods (e.g.
land use regression) that combine geographic information
system (GIS) data with ground monitoring data to predict
exposures in locations without measurements. While this ap-
proach generally works well (Weichenthal et al., 2016; Ryan
& LeMasters, 2007), detailed GIS data are often available
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Figure 1. Locations of global monitoring sites for PM2.5.

on a limited spatial scale and land use regression models are
not generalizable across cities (Patton et al., 2015).

Alternatively, information on traffic, land use, the built envi-
ronment, and other potential sources of exposure can be cap-
tured through satellite imagery. In this study, we explored
the use of deep convolutional neural networks (LeCun et al.,
1998) for estimating global variations in long-term average
outdoor PM2.5 concentrations using only satellite images.

2. Methods
2.1. Data Preparation

Long-Term Average Outdoor PM2.5 Data. We ex-
tracted a global dataset of annual average ground-level
PM2.5 measurements and their corresponding latitude-
longitude coordinates from the World Health Organiza-
tion (WHO16). These data were collected primarily be-
tween 2010 and 2016 and included approximately 20,000
measurements from approximately 6,000 unique monitoring
sites in 98 countries, shown in Figure 1.

Satellite Images. We downloaded satellite images cen-
tered on each ground-level PM2.5 coordinate from Google
Static Maps using the ggmap package in R (R Development
Core Team, 2010; Kahle & Wickham, 2013). We down-
loaded four satellite images for each monitoring site, differ-
ing by integer zoom levels ranging from 13 (covering ap-
proximately 10×10km) to 16 (approximately 1.5×1.5km).
All images have dimensions of 256× 256× 3 to maintain a
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reasonable training time. The satellite images were captured
in 2018.

Data Processing. All latitude-longitude coordinates for
PM2.5-image pairs were first geohashed to a precision of
three (Niemeyer, 2008). The selected precision level of
three corresponds to cells with areas less than 156× 156km,
with widths decreasing moving from the equator to the poles.
The database was then randomly split into training (80%),
validation (10%), and test sets (10%) such that the three sets
were disjoint by geohash codes.

Multiple ground-level PM2.5 measurements were available
for some sites. This meant that multiple exposure values
(i.e. year-to-year changes in annual average PM2.5 concen-
tration at the same location over time) could be assigned to
the same satellite image. We approached this issue in two
ways: 1) Models were developed averaging all available
exposure data for each latitude-longitude pair; 2) Models
were developed without averaging allowing individual im-
ages to have different exposure values based on changes in
annual average PM2.5 concentrations over time. Preliminary
results favoured the second approach (i.e. allowing the same
image to have different PM2.5 concentrations over different
years) and therefore we focused on this approach. As a
result, global model evaluation was also based on single
year annual average ground-level measurements.

2.2. Training and Evaluation

We designed two models to predict spatial variations in
outdoor PM2.5: one on a continuous scale using linear acti-
vations and another across deciles of exposure (ten balanced
categories obtained by evenly splitting the database by the
deciles of the exposure distribution) using softmax (Bridle,
1990). We trained all models with a fixed input size of
256 × 256 × 3. We used dropout (with rates of 0.5) after
the convolutional backbone, and after the densely connected
network. All backbone models were initialized with pre-
trained ImageNet weights, and all models were trained using
a batch size of 64 images (16 images per GPU) for up to
100 epochs. The learning rate was decreased by a factor of
0.1 if the validation accuracy did not improve for 10 epochs.
We stopped the training if the validation accuracy did not
improve for 20 epochs.

Final model selection was based on a systematic evaluation
of several well-known architectures for the convolutional
base including InceptionV3 (Szegedy et al., 2016), Xcep-
tion (Chollet, 2017), and VGG16 (Simonyan & Zisserman,
2015). In addition, several optimizers were tested including
RMSProp (Tieleman & Hinton, 2012) and Nadam (Dozat,
2016) with learning rates of 0.001 and 0.0001. A detailed
leaderboard was maintained, tracking the performance of
different combinations of model architectures and hyper-

Architecture Zoom
Decile Class.
Accuracy (%) SD RMSE

Xception 13 35.33 23.70 13.63
14 33.06 23.70 14.18
15 31.61 23.70 13.64
16 31.61 23.70 14.31

Table 1. Model performance on the validation set across differ-
ent zoom levels. The standard deviation of PM2.5 values in the
validation set are shown as a baseline for evaluating RMSE values.

parameters. The Xception architecture combined with the
Nadam optimizer at a learning rate of 0.0001 performed
best on the validation set, and these results are described in
detail. For the final classification model, gradient-weighted
class activation maps (Selvaraju et al., 2017) were used to
examine specific portions of images used to make predic-
tions.

Evaluation. For each task of predicting continu-
ous/categorical PM2.5, the model with the highest validation
classification accuracy (for decile predictions) or the lowest
validation root mean square error (RMSE) (for continuous
predictions) was retained. For categorical models, we also
report the “one-off accuracy” which reflects the proportion
of the time the model predicts the correct class or one cate-
gory away from the correct class.

As an additional model evaluation step, we compared con-
tinuous PM2.5 estimates from our final global model (called
IMAGE-PM2.5) to those of the Data Integration Model for
Air Quality (DIMAQ) used by the Global Burden of Disease
study (Shaddick et al., 2018a;b). This comparison was con-
ducted for approximately 9000 locations (113 countries) be-
tween 2010 and 2016 with 34,794 annual average measure-
ments ranging from <1 µg/m3 to 332 µg/m3 (mean=20.04
µg/m3, SD=18.76 µg/m3). In addition, we compared our
global model estimates to mean DIMAQ estimates averaged
over the entire 2010-2016 period. Finally, we calculated
site-specific differences between our IMAGE-PM2.5 esti-
mates and mean DIMAQ estimates to evaluate potential
geographic patterns in the magnitude of disagreement be-
tween the two models.

3. Results
The global database contained approximately 19,650
pollution-image pairs with annual mean PM2.5 concentra-
tions ranging from less than 1 µg/m3 to 436 µg/m3 with a
mean value of 23.2 µg/m3 (SD=22.9 µg/m3).

Zoom level 13 satellite images performed best for both
classification and regression (Table 1). Specifically, the fi-
nal categorical model had a validation accuracy of 35.33%
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Figure 1. Measured versus predicted global PM2.5 concentrations in the test set for 10-category 
classification (A) and regression (B). The final model uses the Xception base with zoom level-13 
satellite images. 
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Figure 2. Measured versus predicted global PM2.5 concentrations
in the test set for 10-category classification (A) and regression (B).

across deciles (10% accuracy would be expected by random
chance) (Table 1). The confusion matrix in Figure 2A il-
lustrates model performance on the test set and indicates
that predictions were best at lower and upper deciles with
decreasing performance towards the inner classes. Overall,
the global categorical model achieved a test accuracy of
33.69% and a one-off test accuracy of 65.71%.

For the global IMAGE-PM2.5 continuous model, the lowest
validation RMSE value was 13.63 µg/m3 (Table 1). On the
test dataset, the global model achieved an RMSE value of
13.01 µg/m3 with an R2 value of 0.75 (Figure 2B); however,
model predictions tended to underestimate measured values
at higher concentrations as indicated by the dashed fit-line
in Figure 2B.

We used gradient-weighted class activation maps (Selvaraju
et al., 2017) to identify specific portions of images used
for predictions. Figure 3 shows class-activation maps for
five locations that were correctly classified across deciles of
long-term PM2.5 concentrations. From this figure it is clear
that localized portions of each satellite image are being used
to make predictions; however, the specific ground-level
features that are playing the most important role remain
unclear.

Continuous estimates of annual average PM2.5 concentra-
tions from IMAGE-PM2.5 model were highly correlated
(R2=0.79; slope = 1.019, 95% CI: 1.014, 1.025) with those
predicted by the Data Integration Model for Air Quality
(DIMAQ) used by the Global Burden of Disease (GBD)
study. Agreement between the two models improved slightly
when we compared IMAGE-PM2.5 predictions to DIMAQ
model estimates averaged over the entire seven-year period
tested (2010-2016): R2=0.81; slope=1.022 (95% CI: 1.012,
1.025).

Figure 4 shows the global distribution of differences be-
tween long-term estimates of mean PM2.5 concentrations
(2010-2016) at the 9,000 sites compared in this analysis.
Agreement was best in North America, Europe, and China.
The largest differences were observed in regions where
ground level PM2.5 values (used in DIMAQ) were based

Figure 3. Gradient-weighted class activation maps (Grad-CAMs) for images correctly classified by 
the final global categorical model (using the Xception base and zoom level-13 satellite images). 
The first column is the original input image. The second through sixth columns are the Grad-
CAMs for classes 2, 4, 6, 8, and 10, respectively. Numerical values on the top-right indicate the 
predicted probability that the image belongs to the respective class. The cities are Minneapolis, 
US (C2); Kansas City, US (C4); Amsterdam, NL (C6); Tel Aviv, IL (C8); and Beijing, CN (C10).  

 

Figure 3. Gradient-weighted class activation maps (Grad-CAMs)
for images correctly classified by the final global categorical model.
The first column is the original input image. The second through
sixth columns are the Grad-CAMs for classes 2, 4, 6, 8, and 10,
respectively. Numerical values on the top-right indicate the pre-
dicted probability that the image belongs to the respective class.
The cities are Minneapolis, US (C2); Kansas City, US (C4); Ams-
terdam, NL (C6); Tel Aviv, IL (C8); and Beijing, CN (C10).

predominantly (>70% of values) on PM10 data including
India, Turkey, Romania, and Lithuania.

4. Discussion
In this study we explored the use of convolutional networks
as an alternative, cost-effective means of estimating global
variations in long-term average outdoor PM2.5 concentra-
tions. In particular, we examined this approach across the
global concentration range using ground monitoring data
available from WHO16. To the best of our knowledge,
this is the first study to explore the use of deep learning
in estimating global variations in long-term average out-
door PM2.5 concentrations and we noted several interesting
findings.

First, the predictive performance of the IMAGE-PM2.5

model presented in this study was similar to that of cur-
rent state-of-the-art Bayesian hierarchical models employ-
ing combinations of remote sensing, chemical transport
models, land use, and other information (Shaddick et al.,
2018a;b). This is somewhat surprising given the wealth
of source/emissions information included in state-of-the-
art models. Specifically, Shaddick et al. (Shaddick et al.,
2018a;b) reported a population-weighted RMSE value of
12.10 µg/m3 (R2=0.91) for the DIMAQ model used in
the Global Burden of Disease Study whereas the IMAGE-
PM2.5 in our investigation achieved an RMSE value of 13.01



Learning Global Variations in Outdoor PM2.5 Concentrations with Satellite ImagesFigure 5. Differences in predicted long-term average PM2.5 concentrations (2010-2016) using the IMAGE-PM2.5 model and the DIMAQ 
model.5,28 
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Figure 4. Differences in predicted long-term average PM2.5 concentrations (2010-2016) using the IMAGE-PM2.5 model and the DIMAQ
model (Shaddick et al., 2018a;b).

µg/m3 (R2=0.75) over a similar concentration range. In
addition, our directi comparison of DIMAQ and IMAGE-
PM2.5 predictions indicated a strong correlation between
model estimates with a slope close to 1. Interestingly, the
largest discrepancies between the two models occurred
in regions where ground level PM2.5 data were derived
from PM10 measurements. As the DIMAQ model incorpo-
rated PM2.5 data derived from PM10 measurements and the
IMAGE-PM2.5 model did not, this difference may explain
the larger discrepancies in these areas. Our IMAGE-PM2.5

model may offer useful prior information for Bayesian hi-
erarchical models such as DIMAQ when ground level mea-
surements or emissions data are not available.

One of the clear disadvantages of deep learning models
is the lack of transparency in how model predictions are
generated. Deep convolutional neural networks are some-
what less opaque in that class activation maps can be used
to investigate image characteristics/patterns used to make
predictions. Our results suggest that model predictions of
ground-level PM2.5 concentrations were based on localized
portions of satellite images and that both color and combina-
tions of colors and geometric features were used in making
predictions. However, it was not possible to identify specific
aspects of the built environment that played an important
role in generating model estimates. Interestingly, the zoom
level of satellite images had an important impact on model
performance and future studies should explore other image
characteristics that could be optimized to reduce model er-
rors. Likewise, as deep convolutional neural networks can
have multiple inputs, it may be possible to incorporate ad-
ditional ground-level information (e.g. sources, businesses,

population density, etc.) within each image to capture more
detailed data on local sources of PM2.5 and thus improve
model performance. A second limitation of our analysis was
that the timing of satellite images did not overlap exactly
with the timing of PM2.5 measurements/estimates. This may
have contributed error to our predictions in locations where
major infrastructure changes were made between the time
of PM2.5 measurements and satellite imaging. However,
variation in within-site PM2.5 over the 2010-2016 period
was generally small (SD<5 µg/m3 for 80% of sites). We
aim to include temporally matched satellite images in fu-
ture iterations which may improve the model’s performance.
Moreover, our IMAGE-PM2.5 model is also limited in that
it does not contain a temporal component: predictions only
change if the image changes. Therefore, the IMAGE-PM2.5

model cannot be used to estimate short-term (i.e. year to
year) changes in outdoor PM2.5 concentrations and this
limitation will be addressed in our ongoing work.

In summary, we developed a new method of estimating
global variations in long-term average outdoor PM2.5 con-
centrations using convolutional networks trained with a
large dataset of satellite images and ground level measure-
ments. Our new global IMAGE-PM2.5 model relies on a
single satellite image as input and can provide fast, cost-
effective estimates of PM2.5 concentrations with predictive
performance comparable to modern Bayesian hierarchical
models currently used by the Global Burden of Disease
Project (Shaddick et al., 2018a;b). These findings represent
an important advancement in our current understanding of
how global variations in long-term average PM2.5 concen-
trations can be modelled for global health applications. The
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IMAGE-PM2.5 model can be used as a stand-alone method
of global exposure estimation or incorporated into more
complex hierarchical model structures.
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