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Abstract

We present a deep CNN for breast cancer screen-
ing exam classification, trained and evaluated on
over 200,000 exams (over 1,000,000 images). Our
model achieves an AUC of 0.895 in predicting the
presence of cancer in the breast. We attribute
the high accuracy of our model to a two-stage
training procedure that allows us to use a very
high-capacity patch-level network to learn from
pixel-level labels alongside a network learning
from breast-level labels. Through a study involv-
ing 14 readers, we show that our model is as accu-
rate as an experienced radiologist, and that it can
improve the accuracy of radiologists’ diagnoses
when used as a second reader. We further conduct
a thorough analysis of our model’s performance
on different subpopulations of the screening pop-
ulation, model design, training procedure, errors,
and properties of its internal representations.

1. Introduction
Breast cancer is the second leading cancer-related cause
of death among women in the US. In 2014, over 39 mil-
lion screening and diagnostic mammography exams were
performed in the US. Although mammography is the only
imaging test that has been shown to reduced breast can-
cer mortality (Duffy et al., 2002), there has been discus-
sion regarding the potential harms of screening, including
false positive recalls and associated false positive biopsies.
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Multicenter studies have shown that traditional computer-
aided detection in mammography programs do not improve
their diagnostic performance (Lehman et al., 2015). Recent
developments in deep learning (LeCun et al., 2015) open
possibilities for creating a new generation of tools.

This paper makes several contributions. Primarily, we train
and evaluate a set of strong neural networks on a mammog-
raphy dataset with biopsy-proven labels, that is of a massive
size by the standards of medical image analysis. We use
two complimentary types of labels: breast-level labels in-
dicating whether there is a benign or malignant finding in
each breast, and pixel-level labels indicating the location
of the findings. To quantify the value of pixel-level labels,
we compare a model using only breast-level labels against
a model using both breast-level and pixel-level labels. Our
best model achieves an AUC of 0.895 in identifying malig-
nant cases and 0.756 in identifying benign cases on the test
set reflecting the screening population. In a reader study,
we compared the performance of our best model to that
of radiologists and found our model to be as accurate as
radiologists in terms of AUC. We also found that a hybrid
model, taking the average of the probabilities of malignancy
predicted by a radiologist and by our neural network, yields
more accurate predictions than either of the two separately.
This suggests that our model and radiologists learned differ-
ent aspects of the task and that our model could be effective
as a second reader. Finally, we have published the code and
weights of our best models online.

2. Data
Our dataset1 includes 229,426 digital screening mammog-
raphy exams (1,001,093 images) from 141,473 patients.
Each exam contains at least four images, corresponding to
the four standard views used in screening mammography.

1The dataset is not currently available publicly, however a
detailed description of how it was extracted can be found in a
technical report (Wu et al., 2019).

https://github.com/nyukat/breast_cancer_classifier
https://github.com/nyukat/breast_cancer_classifier
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Each exam was assigned labels indicating whether each
breast was found to have biopsy-proven malignant or be-
nign findings. We have 5,832 exams with at least one biopsy
performed within 120 days of the mammogram. Among
these, biopsies confirmed malignant findings for 985 (8.4%)
breasts and benign findings for 5,556 (47.6%) breasts. 234
(2.0%) breasts had both malignant and benign findings. For
the remaining screening exams that were not matched with
a biopsy, we assigned labels corresponding to the absence
of malignant and benign findings in both breasts.

For all exams matched with biopsies, we asked a group
of radiologists to retrospectively indicate the location of
the biopsied lesions at a pixel level. An example of such
a segmentation is shown in Figure 1. According to the
radiologists, approximately 32.8% of exams were mammo-
graphically occult, i.e., the lesions that were biopsied were
not visible on mammography, even retrospectively, and were
identified using other imaging modalities.

3. Deep CNNs for cancer classification
Our goal is to produce predictions corresponding to the four
labels for each exam. As input, we take four high-resolution
images corresponding to the four standard screening mam-
mography views. See Figure 2 for a schematic overview.

Figure 1. An example of a seg-
mentation. Left: the origi-
nal image. Right: the image
with lesions requiring a biopsy
highlighted. The malignant
finding is highlighted with red
and benign finding with green.
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Figure 2. A schematic representa-
tion of how we formulated breast
cancer exam classification as a
learning task.

3.1. Model architecture
We trained a deep multi-view CNN of architecture shown in
Figure 3, inspired by Geras et al. (2017). We use an input
resolution of 2677× 1942 pixels for CC views, and 2974×
1748 pixels for MLO views, based on the optimal window
size selection procedure Wu et al. (2019). The network
consists of two core modules: (i) four view-specific columns,
each outputting a fixed-dimension hidden representation
for each mammography view, and (ii) two fully connected
layers to map from the computed hidden representations to
the output predictions. We used four ResNet-22 columns to
compute a 256-dimension hidden representation vector of
each view. It refers to a 22-layer residual network (He et al.,
2016) with additional modifications such as a larger kernel
in the first convolutional layer and fewer filters in each layer.

We concatenate the L-CC and R-CC representations into a
512-dimension vector, and apply two fully connected layers
to generate predictions for the four outputs. We do the
same for the L-MLO and R-MLO views. We average the
probabilities predicted by the CC and MLO branches of the
model to obtain our final predictions.

3.2. Patch-level classification model and heatmaps
We trained an auxiliary model to classify 256× 256-pixel
patches of mammograms, predicting the presence or absence
of malignant and benign findings in a given patch. The
labels for these patches are produced based on overlap with
the pixel-level segmentations. We refer to this model as
a patch-level model, in contrast to the breast-level model
described above which operates on images of the whole
breast. Subsequently, we apply this auxiliary network to the
full resolution mammograms in a sliding window fashion to
create two ‘heatmaps’ for each image (Figure 4), containing
the estimated probability of malignant and benign findings
within a corresponding patch. These heatmaps can be used
as additional input channels to the breast-level model to
provide supplementary fine-grained information.
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Figure 3. Architecture of our model. The archi-
tecture is divided into CC and MLO branches.
In each branch, the corresponding left and right
representations from the ResNets are individu-
ally average-pooled spatially and concatenated,
and two fully connected layers are applied
to compute the predictions for the four out-
puts. Weights are shared between L-CC/R-CC
columns and L-MLO/R-MLO columns. When
heatmaps are added as additional channels to
corresponding inputs, the first layers of the
columns are modified accordingly.

Figure 4. The
original image,
the ‘malignant‘
heatmap over
the image and
the ‘benign‘
heatmap over
the image.

Using separate breast- and pixel-level models as described
above differentiates our work from approaches which utilize
pixel-level labels in a single differentiable network (Lot-
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ter et al., 2017) or models based on the variations of R-
CNN (Ribli et al., 2018). Our approach allows us to use
a very deep auxiliary network—a DenseNet121 (Huang
et al., 2017)—at the patch level, initialized from pretrain-
ing on large off-domain data sets such as ImageNet (Deng
et al., 2009), as this network does not have to process the
entire high-resolution image at once. Adding the heatmaps
produced by the patch-level classifier as additional input
channels allows the main classifier to get the benefit from
pixel-level labels, while the heavy computation necessary to
produce the pixel-level predictions does not need to be re-
peated each time an example is used for learning. Hereafter,
we refer to the model using only breast-level labels as the
image-only model, and the model using breast-level labels
and the heatmaps as the image-and-heatmaps model.

4. Experiments
In all experiments, we used the training set for optimizing
parameters of our model and the validation set for tuning
hyperparameters of the model and the training procedure.
We evaluated models with AUC for malignant/not malignant
and benign/not benign classification tasks on breast level.

To further improve our results, we applied model ensem-
bling (Dietterich, 2000), wherein we trained five copies
of each model with different random initializations of the
weights in the fully connected layers. The remaining
weights are initialized with the weights of the model pre-
trained on BI-RADS classification, giving our model a sig-
nificant boost in performance. For each model, we report the
results from a single network (mean and standard deviation
across five random initializations) and from an ensemble.

We evaluate our model on several populations to test dif-
ferent hypotheses: (i) screening population, including all
exams from the test set without subsampling; (ii) biopsied
subpopulation, which is subset of the screening population,
only including exams from the screening population con-
taining breasts which underwent a biopsy; (iii) reader study
subpopulation, which consists of the biopsied subpopulation
and a subset of randomly sampled exams from the screening
population without any findings.

4.1. Screening population
We present the results on the screening population, which
approximates the distribution of patients who undergo rou-
tine screening. Results are shown in the first two rows of
Table 1. The model ensemble using only mammogram im-
ages achieved an AUC of 0.840 for malignant/not malignant
classification and an AUC of 0.743 for benign/not benign
classification. The image-and-heatmaps model ensemble
using both the images and the heatmaps achieved an AUC of
0.895 for malignant/not malignant and 0.756 for benign/not
benign classification, outperforming the image-only model

Table 1. AUCs on screening and biopsied populations.

single 5x ensemble

malignant benign malignant benign

screening population

image-only 0.827±0.008 0.731±0.004 0.840 0.743
image-and-heatmaps 0.886±0.003 0.747±0.002 0.895 0.756

biopsied population

image-only 0.781±0.006 0.673±0.003 0.791 0.682
image-and-heatmaps 0.843±0.004 0.690±0.002 0.850 0.696

on both tasks. The discrepancy in performance of our mod-
els between these two tasks can be largely explained by
the fact that a larger fraction of benign findings than ma-
lignant findings are mammographically-occult (Table 2).
Additionally, there can be noise in the benign/not benign
labels associated with radiologists’ confidence in their di-
agnoses. For the same exam, one radiologist might discard
a finding as obviously not malignant without requesting a
biopsy, while another radiologist might ask for a biopsy.

We find that the image-and-heatmaps model performs bet-
ter than the image-only model. Moreover, the image-and-
heatmaps model improves more strongly in malignant/not
malignant classification than benign/not benign classifica-
tion. We also find that ensembling is beneficial across all
models, leading to a small but consistent increase in AUC.

Table 2. Number of breasts with malignant and benign findings
based on the labels extracted from the pathology reports, broken
down according to whether the findings were visible or occult.

malignant benign

visible occult visible occult

training 750 107 2,586 2,004
validation 51 15 357 253

test 54 8 215 141

overall 855 (86.8%) 130 (13.2%) 3,158 (56.84%) 2,398 (43.16%)

4.2. Biopsied subpopulation
Results of our models evaluated only on the biopsied sub-
population are in the last two rows of Table 1. Within our
test set, this corresponds to 401 breasts: 339 with benign
findings, 45 with malignant findings, and 17 with both. This
subpopulation that underwent biopsy differs markedly from
the overall screening population, which consists of largely
healthy individuals undergoing routine annual screening
without recall for additional imaging or biopsy.

On the biopsied subpopulation, we observed a consistent
difference between the performance of image-only and
image-and-heatmaps models. The ensemble of image-and-
heatmaps models performs best on both malignant/not ma-
lignant classification, attaining an AUC of 0.850, and on
benign/not benign classification, attaining an AUC of 0.696.
The markedly lower AUCs attained for the biopsied sub-
population, in comparison to the screening population, can
be explained by the fact that exams that require a recall for
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diagnostic imaging and that subsequently need a biopsy are
more challenging for both radiologists and our model.2

5. Reader study
To compare the performance of our image-and-heatmaps
ensemble (hereafter referred to as the model) to human
radiologists, we performed a reader study with 14 readers,
with varying levels of experience, each reading 720 exams
from the test set and providing a probability estimate of
malignancy on a 0%-100% scale for each breast in an exam.
Among the 1,440 breasts in 720 exams, there are 62 breasts
labeled as malignant and 356 breasts labeled as benign.
Exams were shuffled before being given to the readers.
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Figure 5. ROC curves for reader study. (left): curves for all 14
readers. Their average performance are highlighted in blue. (mid-
dle): curves for hybrid of the image-and-heatmaps ensemble with
each single reader. Curve highlighted in blue indicates the aver-
age performance of all hybrids. (right): comparison among the
image-and-heatmaps ensemble, average reader and average hybrid.

Our model achieved an AUC of 0.876. AUCs achieved
by individual readers varied from 0.705 to 0.860 (mean:
0.778, std: 0.0435). Individual ROCs, along with their
averages are shown in Figure 5(left). We also evaluated the
accuracy of a human-machine hybrid, whose predictions are
the averaged predictions of a radiologist and of the model.
Hybrids between each reader and the model achieved an
average AUC of 0.891 (std: 0.0109) (cf. Figure 5(middle)).
These results suggest our model can be used as a tool to
assist radiologists in reading breast cancer screening exams
and that it captured different aspects of the task compared
to experienced breast radiologists.

Additionally, we examined how the network represents the
exams internally by visualizing the hidden representations
learned by the best image-and-heatmaps model. We visual-
ize two sets of activations: concatenated activations from
the last layer of each of the four image-specific columns,
and concatenated activations from the first fully connected

2More precisely, this difference in AUC can be explained by
the fact that while adding or subtracting negative examples to the
test population does not change the true positive rate, it alters the
false positive rate. False positive rate is computed as a ratio of
false positive and negative. Therefore, when adding easy negative
examples to the test set, the number of false positives will be
growing slower than the number of all negatives, which will lead
to an increase in AUC. On the other hand, removing easy negative
examples will have a reverse effect and the AUC will be lower.
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Figure 6. Exams in the reader study set represented using the con-
catenated activations from the four image-specific columns (left)
and the concatenated activations from the first fully connected
layer in both CC and MLO model branches (right).

layer in both CC and MLO model branches. We embed
them into a two-dimensional space using UMAP (McInnes
et al., 2018) with the Euclidean distance.

Figure 6 shows the embedded points. Color and size of
each point reflect the same information: the warmer and
larger the point is, the higher the readers’ mean prediction
of malignancy is. A score for each exam is computed as an
average over predictions for the two breasts. We observe that
exams classified as more likely to be malignant according to
the readers are close to each other for both sets of activations.
The fact that previously unseen exams with malignancies
were found by the network to be similar further corroborates
that our model exhibits strong generalization capabilities.

6. Discussion
By leveraging a large data set with breast-level and pixel-
level labels, we built a neural network which can accurately
classify breast cancer screening exams. We attribute this
success in large part to the significant amount of compu-
tation encapsulated in the patch-level model, which was
densely applied to the input images to form heatmaps as
additional input channels to a breast-level model. It would
be impractical to train this model in a completely end-to-
end fashion with currently available hardware. Although
our results are promising, we acknowledge that the test set
used in our experiments is relatively small and our results
require further clinical validation. We also acknowledge
that although our model’s performance is stronger than that
of the radiologists’ on the specific task in our reader study,
this is not exactly the task that radiologists perform. How-
ever, in our study a hybrid model including both a neural
network and expert radiologists outperformed either indi-
vidually, suggesting the use of such a model could improve
radiologist sensitivity for breast cancer detection.

In addition, the design of our model is relatively simple.
More sophisticated and accurate models are possible. Fur-
thermore, to test the utility of this model in real-time reading
of screening mammograms, a clear next step would be pre-
dicting the development of breast cancer in the future–before
it is even visible to a trained human eye.
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