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ABSTRACT
The increased availability of high-resolution satellite imagery allows to sense
very detailed structures on the surface of our planet and opens up new direc-
tions in the analysis of remotely sensed imagery. While deep neural networks
have achieved significant advances in semantic segmentation of high-resolution
images, most of the existing approaches tend to produce predictions with poor
boundaries. In this paper, we address the problem of preserving semantic seg-
mentation boundaries in high-resolution satellite imagery by introducing a novel
multi-task loss. The loss leverages multiple output representations of the seg-
mentation mask and biases the network to focus more on pixels near bound-
aries. We evaluate our approach on the large-scale Inria Aerial Image Label-
ing Dataset. Our results outperform existing methods with the same architec-
ture by about 3% on the Intersection over Union (IoU) metric without additional
post-processing steps. Source code and all models are available under https:
//github.com/bbischke/MultiTaskBuildingSegmentation.

1 INTRODUCTION
In this paper, we focus on the segmentation of building footprints from high resolution satellite
imagery. Building footprints are of vital importance in the context of urban planning and emergency
response since they can be used to derive population estimates and household densities. While such
information is important for rescuers during a disaster event to better disptach the existing resources,
this information can be also used beforehand to mitigate and reduce risk with sustainable planning.
Building footprint segmentation at a global scale has therefore direct impact on the UN Sustainable
Development Goal 11 (Sustainable cities and communities) and Goal 15 (Life on Land).

The task of automatically segmenting building footprints at a global scale is challenging since satel-
lite images often contain deviations depending on the geographic location. To address this problem
of global variation, Maggiori et al. (2017) created a benchmark database of labeled imagery. The au-
thors observed that the shape of the building predictions on high resolution images is often rounded
and does not reveal straight boundaries which buildings usually have. In this paper, we propose a
novel multi-task loss to overcome the problem of “blobby” predictions. Our approach incorporates
boundary information of buildings and improves the segmentation results while using less memory
at inference time compared to Maggiori et al. (2017) or more recent segmentation models such as
DeepLabv3 and U-Net that keep feature maps at the full original image resultion in memory to pre-
serve edge information. Since we want to apply our model on a global scale, we use the lightweight
SegNet model. In this regard, the contributions of this paper can be summarized as follows:

• We introduce an uncertainty weighted multi-task loss based on the distance transform to
improve semantic segmentation predictions of deep neural networks. We show that the
combination of related prediction tasks via the proposed loss yields to a higher accuracy
compared to networks trained on single tasks only.

• Experiments show that without any major changes in the architecture, same data and same
complexity, we are able to improve the IoU metric of building footprints in remote sensed
imagery by about 2% compared to networks trained on single task losses.

1

https://github.com/bbischke/MultiTaskBuildingSegmentation
https://github.com/bbischke/MultiTaskBuildingSegmentation


Presented at the ICLR AI for social good workshop 2019

2 RELATED WORK

Semantic Segmentation is one of the core challenges in computer vision and fully convolutional
neural networks or encoder-decoder based architectures have been successfully applied to this prob-
lem. One of the main problems when applying CNNs on semantic segmentation tasks is the down-
sampling with pooling layers. This increases the field of view of convolutional kernels but loses at
the same time high-frequency details in the image. Past work has addressed this issue by reintroduc-
ing high frequency details via skip-connections Shelhamer et al. (2017); Ronneberger et al. (2015);
Badrinarayanan et al. (2015), dilated convolutions Yu & Koltun (2016); Zhao et al. (2017); Chen
et al. (2017) and expensive post-processing with conditional random fields Yu & Koltun (2016);
Chen et al. (2018); Lin et al. (2017). More recent approaches focus on the incorporation of bound-
ary information in the models. This is often achieved on the architectural level by introducing
special boundary refinement modules Lin et al. (2017); Peng et al. (2017), on the fusion level by
combining feature maps with boundary predictions Marmanis et al. (2018) or by using a different
output representation in the training Hayder et al. (2017); Bai & Urtasun (2017). Closest to our
work are the approaches of Hayder et al. (2017) and Yuan (2016) which train the network to predict
distance classes to object boundaries instead of a segmentation mask. Our work differs from these
approaches, that we additionally predict semantic labels through a multi-task loss and further im-
prove the segmentation results.
In the remote sensing domain, the extraction of building footprints has been extensively studied in
the past decade. Yuan (2016) used a FCN to predict the pixel distance to boundaries and thresh-
olded the predictions to get the final segmentation mask. Similar to our approach is the work of
Marmanis et al. (2018) which tries to preserve boundary information on segmentation classes. This
was achieved by first using SegNet as feature extractor and applying additionally an edge detection
network to extract edges. The boundary predictions are injected into the network by concatenating
the feature maps of SegNet with the edge prediction. Our work is different from this approach,
that we do not want to extract boundary and semantic information by two different networks and
fuse this information at later stages. Our goal is to rather train a single network such that a shared
representation for boundary and segmentation prediction can be learned. This reduces the overall
complexity of the model and avoids problems such as class-agnostic edge predictions.

3 MULTI-TASK LEARNING

In our approach, we use multi-task learning to improve the segmentation predictions of building
footprints. The goal is to rely besides the semantic term also on an additional term which incorpo-
rates the boundary information of the segmentation mask into a single loss function. We achieve this
shared representation of semantic and boundary features by training the network on two different
tasks. We train our segmentation network parameterized by θ with a set of training images x along
with their ground truth segmentation masks S and corresponding truncated distance class labels D
represented by (x(n), S(n), D(n));n = 1, 2, ..., N .

3.1 OUTPUT REPRESENTATION

The goal of our multi-task approach is to incorporate besides semantic information about class
labels also geometric properties in the network training. Although there are multiple geometric
properties which can be extracted such as shape and edge information, we extract on the distance
of pixels to boundaries of buildings. Such a representation has the advantages that (1) it can be
easily derived from existing segmentation masks by means of the distance transform and (2) neural
networks can be easily trained with the representation using existing losses like the mean squared
error or the negative log likelihood loss. Using this representation, we bias the network to focus
more on pixels close to boundaries of building footprints. Compared to other representations such
as the Watershed Transform used in Bai & Urtasun (2017), our representation does not only capture
boundary information inside the object class but also considers boundary pixels outside the object.
We truncate the distance at a given threshold to only incorporate the nearest pixels to the border. Let
Q denote the set of pixels on the object boundary and Ci the set of pixels belonging to class i. For
every pixel p we compute the truncated distance D(p) as:

D(p) = δpmin(min∀q∈Q d(p, q), R),

δp =

{
+1 if p ∈ Cbuilding
−1 if p /∈ Cbuilding

(1)
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where d(p, q) is the Euclidean distance between pixels p and q and R the truncation threshold. The
pixel distances are additionally weighted by the sign function δp to represent whether pixels lie
inside or outside the building masks. The continuous distance values are then uniformly quantized
to facilitate training. Similar to Hayder et al. (2017) we one-hot encode the distance map into a
binary vector representation b(p) as:

D(p)
∑K
k=1 rnbk(p)

∑K
k=1 bk(p) = 1 (2)

with rn as distance value corresponding to bin k. The k resulting binary pixel-wise maps can be
understood as classification maps for each of the kth border distance.

3.2 ENODER-DECODER NETWORK ARCHITECTURE

The network in this work is based on the fully convolutional network SegNet. SegNet has an
encoder-decoder architecture which is commonly used for semantic segmentation. The encoder has
the same architecture as VGG16 Simonyan & Zisserman (2014), consists of 13 convolutional layers
of 3x3 convolutions and five layers of 2x2 max pooling. We add one convolutional layer Hdist to
the last layer of the decoder to predict the distance to the border of buildings and one convolutional
layer Hseg to predict the segmentation mask. We squash the outputs of Hseg and Hdist through a
softmax layer to get the probabilities for the class labels. Please note, that our approach could also
rely on other segmentation models, we used SegNet due to its memory efficiency.

3.3 UNCERTAINTY BASED MULTI-TASK LOSS

We define the multi-task loss as follows:
Ltotal(x; θ) =

∑T
i=1 λiLi(x; θ) (3)

where T is the number of tasks and Li the corresponding task loss functions to be minimized with
respect to the network parameters θ. Each task loss Li is weighted by a scalar λi to model the
importance of each task on the combined loss Ltotal. The weighting terms λi in the multi-task loss
introduce additional hyper-parameters which are usually equated or found through an expensive
grid-search. Motivated by Kendall et al. (2018), we learn the relative task weights λi by taking
the uncertainty in the model’s prediction for each task into consideration. The aim is to learn a
relative task weight depending on the confidence of the individual task prediction by the network.
Within this context, we define the multi-loss function Ltotal as a combination of two pixel-wise
classification losses. We write the total objective as follows:

Ltotal(x; θ, σdist, σseg) = Ldist(x; θ, σdist)

+Lseg(x; θ, σseg)
(4)

where Ldist, Lseg are the classification loss functions for the prediction of the distance-classes and
the segmentation mask with σdist, σseg as corresponding task weights for λi. We represent the
likelihood of the model for each classification task as a scaled version of the model output f(x) with
the uncertainty σ squashed through a softmax function:

P (C = 1|x, θ, σt) =
exp( 1

σ2t
fc(x))∑

c′=1
exp( 1

σ2t
fc′ (x))

(5)

Using the negative log likelihood, we express the classification loss with uncertainty as follows:

Lt(x, θ, σt) =
∑C
c=1−CclogP (Cc = 1|x, θ, σt)

=
∑C
c=1−Cclog(exp(

1
σ2
t
fc(x))) + log

∑C
c′=1 exp(

1
σ2
t
fc′(x))

(6)

Applying the same assumption as in Kendall et al. (2018):

1
σ2

∑
c′ exp(

1
σ2 fc′(x)) ≈ (

∑
c′ exp(fc′(x)))

1
σ2 (7)

allows to simplify Eq. 6 to:

Lt(x, θ, σt) ≈ 1
σ2
t

∑C
c=1−CclogP (Cc = 1|x, θ) + log(σ2

t ) (8)

We use the approximated form of Eq. 8 in both classification tasks Ldist and Lseg for the prediction
of segmentation classes and distance classes respectively. It is worth mentioning, that for numerical
stability, we trained the network to predict log(σ2

i ) instead of σ2
i .
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Table 1: Results for the same network trained on multiple losses: networks using the multi-task loss
outperform the ones relying on a single task, uncertainty task-weights achieve overall best results.

Austin Chicago Kitsap Co. West Tyr. Vienna Overall
FCN + MLP

(Baseline Maggiori et al. (2017))
IoU
Acc.

61.20
94.20

61.30
90.43

51.50
98.92

57.95
96.66

72.13
91.87

64.67
94.42

SegNet (Single-Loss)
NLL-Loss for Seg. Classes

IoU
Acc.

69.37
95.02

74.08
94.80

68.36
95.11

67.36
98.79

72.69
93.55

71.27
95.45

SegNet (Single-Loss)
NLL-Loss for Dist. Classes

IoU
Acc.

69.29
94.92

75.39
95.04

69.56
95.21

65.74
98.77

73.74
93.75

72.05
95.53

SegNet (MultiTask-Loss)
(Equally Weighted)

IoU
Acc.

71.62
95.63

77.13
95.47

71.32
95.69

64.24
98.80

75.33
94.28

73.78
95.97

SegNet (MultiTask-Loss)
(Uncertainty Weighted)

IoU
Acc.

72.43
95.71

77.68
95.60

72.28
95.81

64.34
98.76

76.15
94.48

74.49
96.07

4 EXPERIMENTAL RESULTS

4.1 DATASET AND METRICS

Our Experiments are based on the large-scale Inria Aerial Image Labeling Dataset Maggiori et al.
(2017), which is comprised of 360 ortho-rectified aerial RGB images at 0.3m spatial resolution. The
satellite scenes have tiles of size 5000 x 5000 px, thus covering a surface of 1500 x 1500m per tile.
Ground-truth is only provided for the training set which covers five cities in from of segmentation
maseks for the two classes building and non-building. For comparability, we split the dataset as
described by Maggiori et al. (2017) (image 1 to 5 of each location for the validation set, 6 to 36 for
the training set). We evaluate our approach with the Intersection over Union (IoU) metric for the
positive building class. This is the number of pixels labeled as building in the prediction and the
ground truth, divided by the number of pixels labeled as pixel in the prediction or the ground truth.
As second metric, we report accuracy, the percentage of correctly classified pixels.

4.2 IMPORTANCE OF UNCERTAINTY MULTI-TASK LEARNING

In this section, we show the advantage of combining boundary and semantic information via the
proposed multi-task loss to improve the segmentation results. We train all networks end-to-end
with SGD, the details can be found in the Supplemental Material i. To evaluate the influence on
the learned uncertainty weights we additionally train the same network with the multi-task loss but
fix the importance factors λi of both tasks with one. The results in Table 4 illustrate that (1) the
network trained on the uncertainty task loss achieves overall on both evaluation metrics the best
results. Location-wise the network achieves also the highest IoU scores and accuracies with the
exception of Kitsap Co. and West Tyrol. (2) When training the network with a multi-task loss
(equally and uncertainty weighted) the overall accuracy is better compared to both single loss tasks.
(3) The equally weighted multi-task loss is slightly worse than the uncertainty one.

5 CONCLUSION

In this paper, we focused on semantic segmentation of building footprints from high resolution
satellite imagery and showed how boundary information of segmentation masks can be leveraged
in a multi-task loss in order to overcome the problem of ”blobby” predcitions. Without additional
parameters or higher network complexity, our model could still achieve an improvement of 3%
on the IoU metric against the baseline with resulting segmentation masks that better reflect straight
boundaries of building footprints. Building upon this work, we want to incorporate a deeper analysis
for the influence of the number of classes and size of the bins of our proposed multi-task approach.
We want to make the step from semantic segmentation towards instance segmentation by adding an
additional term to the multi-task loss.
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I SUPPLEMENTAL MATERIAL

In the following, we provide more details on reproducibility and further experiments.

I.1 MOTIVATION

These images show that the segmentation masks overlap quite with the ground truth masks. The
boundaries of the predicted building footprints do not reflect straight boundaries.

Figure 1: The predictions for building footprints (right) overlap well with the ground truth masks
(middle) but often fail to reflect straight boundaries.

I.2 TRAINING DETAILS

We initialize the weights of the encoder with the weights of a VGG16 Simonyan & Zisserman (2014)
model pre-trained via ImageNet Russakovsky et al. (2015). All networks are trained with SGD using
a learning rate of 0.01, weight decay of 0.0005 and momentum of 0.9. We use the cross entropy loss
on the segmentation class labels reduce the learning rate according to the poly policy Zhao et al.
(2017) (p=0.5) and stop the training after 30 epochs. We extract 7 batches from each satellite image
and randomly crop 24 patches of size 384 x 384 pixels for each batch from the images. We apply
randomly flipping in vertical and horizontal directions as data augmentation.

I.3 IMPORTANCE OF THE DISTANCE PREDICTION TASK

We evaluate the advantage of predicting distance classes to boundaries using a single loss function.
As baseline we train SegNet with the NLL loss on the semantic segmentation classes and achieve
an IoU of 71.27% for the building class. We modify this network such that we remove the Hseg and
attach Hdist as shown in i.5. As output representation we use the truncated and quantized distance
mask, setting the truncation threshold R=20 and the number of bins K=10. We train the network
as in the previous setup but let the network predict distance classes to boundaries. To get the final
segmentation mask from the distance predictions, we threshold all distances above five to only get
the pixels inside the buildings. The result of this experiment is illustrated in Table 4. It shows that
by training the network on this output representation with border classes the overall IoU is increased
by about 1% compared to the one containing only segmentation classes.
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I.4 VISUALIZATIONS OF THE NETWORK PREDICTIONS

(a) (b) (c) (d) (e) (f)

Figure 2: Two different locations, column-wise: (a) satellite images in RGB, (b) ground truth masks
for the building footprints, (c) segmentation predictions by our proposed multi-task network, (d)
segmentation predictions by a SegNet Badrinarayanan et al. (2015), (e) ground truth masks for
distance classes and (f) predicted distance classes. It can be seen that our approach produces less
“blobby” predictions with sharper edges compared to the FCN. (Best viewed in electronic version)

I.5 MULTI-TASK NETWORK ARCHITECTURE

An illustration of the proposed multi-task network architecture for semantic segmentation. The
encoder is based on the VGG16 architecture. The decoder upsamples its input using the transferred
pooling indices from its encoder to densifies the feature maps with multiple successive convolutional
layers. The network uses a convolutional layer Hdist after the last decoder layer to predict distance
classes and one layer Hseg to predict the segmentation masks.

Input

Segmentation

Distance Pred.

Conv (3x3) +  BatchNorm + ReLU

Max-Pooling
Un-Pooling Conv (1x1)

Encoder Decoder

ᶚ ᶥPooling Indices

Softmax

ᶚ ᶥ

Figure 3: An illustration of the proposed multi-task network architecture for semantic segmentation.

7


	Introduction
	Related work
	Multi-task learning
	Output representation
	Enoder-decoder network architecture
	Uncertainty Based Multi-Task Loss

	Experimental Results
	Dataset and Metrics
	Importance of uncertainty multi-task learning

	Conclusion
	Supplemental Material
	Motivation
	Training Details
	Importance of the Distance Prediction Task
	Visualizations of the network predictions
	Multi-Task Network Architecture



