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ABSTRACT

Can health entities collaboratively train deep learning models without sharing
sensitive raw data? This paper proposes several configurations of a distributed deep
learning method called SplitNN to facilitate such collaborations. SplitNN does
not share raw data or model details with collaborating institutions. The proposed
configurations of splitNN cater to practical settings of i) entities holding different
modalities of patient data, ii) centralized and local health entities collaborating on
multiple tasks and iii) learning without sharing labels. We compare performance
and resource efficiency trade-offs of splitNN and other distributed deep learn-
ing methods like federated learning, large batch synchronous stochastic gradient
descent and show highly encouraging results for splitNN.

1 INTRODUCTION

Collaboration in health is heavily impeded by lack of trust, data sharing regulations such as HIPAA
(Annas et al., 2003; CDC, 2003; Mercuri, 2004; Gostin et al., 2009; Luxton et al., 2012) and limited
consent of patients. In settings where different institutions hold different modalities of patient
data in the form of electronic health records (EHR), picture archiving and communication systems
(PACS) for radiology and other imaging data, pathology test results, or other sensitive data such as
genetic markers for disease, collaborative training of distributed machine learning models without
any data sharing is desired. Deep learning methods in general have found a pervasive suite of
applications in biology, clinical medicine, genomics and public health as surveyed in Ching et al.
(2018); Shickel et al. (2018); Miotto et al. (2017); Rav1 et al. (2017); Alipanahi et al. (2015); Litjens
et al. (2017). Training of distributed deep learning models without sharing model architectures and
parameters in addition to not sharing raw data is needed to prevent undesirable scrutiny by other
entities. As a concrete health example, consider the use case of training a deep learning model for
patient diagnosis via collaboration of two entities holding pathology test results and radiology data
respectively. These entities are unable to share their raw data with each other due to the concerns
noted above. That said, diagnostic performance of the distributed deep learning model is highly
contingent on being able to use data from both the institutions for its training. In addition to such
multi-modal settings, this problem also manifests in settings with entities holding data of the same
modality as shown in Fig 1 below. As illustrated, local hospitals or tele-health screening centers do
not acquire an enormous number of diagnostic images on their own. These entitites may also be
limited by diagnostic manpower. A distributed machine learning method for diagnosis in this setting
would enable each individual center to contribute data to an aggregate model without sharing any raw
data. This configuration can achieve high accuracy while using significantly lower computational
resources and communication bandwidth than previously proposed approaches. This enables smaller
hospitals to effectively serve those in need while also benefiting the distributed training network as a
whole. In this paper, we build upon splitNN introduced in Gupta & Raskar (2018) to propose specific
configurations that cater to practical health settings such as these and furthermore as described in the
sections below.

1.1 RELATED WORK:
In addition to splitNN Gupta & Raskar (2018), techniques of federated deep learning McMahan et al.

(2016) and large batch synchronous stochastic gradient descent (SGD)Chen et al. (2016); Konecny
et al. (2015) are currently available approaches for distributed deep learning. There has been no
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Figure 1: Distributed learning over retinopathy images (or undetected fast moving threats) over slow
bit-rate (‘snail-pace’), to detect the emerging threat by pooling their images but without exchanging
raw patient data.

work as yet on federated deep learning and large batch synchronous SGD methods with regards
to their applicability to useful non-vanilla settings of distributed deep learning studied in rest of
this paper such as a) distributed deep learning with vertically partitioned data, b) distributed deep
learning without label sharing, c) distributed semi-supervised learning and d) distributed multi-task
learning. That said, with regards to ‘non-neural network’ based federated learning techniques, the
work in Hardy et al. (2017) shows their applicability to vertically partitioned distributed data Navathe
et al. (1984); Agrawal et al. (2004); Smith et al. (2017); Abadi et al. (2007) shows applicability to
multi-task learning in distributed settings. We now propose configurations of splitNN for all these
useful settings in the rest of this paper.

2  SPLITNN ALGORITHM:

Algorithm 1 Sp1itNN. The K clients are indexed by k; B is the local minibatch size, and 7 is the
learning rate.

EnsureServer executes at round ¢ > 0:
for each client k& € S; in parallel do
A¥ + ClientUpdate(k, t)
Compute Wt — Wt — nV@(Wt, At)
Send V{(A; W) to client k for ClientBackprop(k, t)

EnsureClientUpdate(k, t): // Run on client k
Aj=¢
for each local epoch i from 1 to £ do
for batch b € B do
Concatenate f(b, Hf) to A¥
return A¥ to server

EnsureClientBackprop(k, ¢, V£(A; Wy)):  // Run on client k
for batch b € B do
Hy = Hy — V(A Wi b)

In this method each client trains the network upto a certain layer known as the cut layer and sends the
weights to server. The server then trains the network for rest of the layers. This completes the forward
propagation. Server then generates the gradients for the final layer and back-propagates the error
until the cut layer. The gradient is then passed over to the client. The rest of the back-propagation
is completed by client. This is continued till the network is trained. The shape of the cut could be
arbitrary and not necessarily, vertical. In this framework as well there is no explicit sharing of raw
data.
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Figure 2: Split learning configurations for health shows raw data is not transferred between the client
and server health entities for training and inference of distributed deep learning models with SplitNN.

2.1 CONFIGURATIONS FOR HEALTH

In this section we propose several configurations of splitNN for various practical health settings:
Simple vanilla configuration for split learning: This is the simplest of splitNN configurations
as shown in Fig 2a. In this setting each client, (for example, radiology center) trains a partial
deep network up to a specific layer known as the “cut layer.” The outputs at the cut layer are
sent to a server which completes the rest of the training without looking at raw data (radiology
images) from clients. This completes a round of forward propagation without sharing raw data.
The gradients are now back propagated at the server from its last layer until the cut layer. The
gradients at the cut layer (and only these gradients) are sent back to radiology client centers.
The rest of back propagation is now completed at the radiology client centers. This process is
continued until the distributed split learning network is trained without looking at each others raw data.

U-shaped configurations for split learning without label sharing: While the method de-
scribed above requires sharing of labels, we can mitigate this issue by using a U-shaped configuration
that does not require any label sharing. In this setup we wrap the network around at end layers of
server’s network and send the outputs back to client entities (as seen in Fig.2b). While the server still
retains a majority of its layers, the clients generate the gradients from the end layers and use them for
backpropagation without sharing the corresponding labels.

Vertically partitioned data for split learning: This configuration allows for multiple insti-
tutions holding different modalities of patient data to learn distributed models without data sharing. In
Fig. 2c, we show example configurations of splitNN suitable for such multi-modal multi-institutional
collaboration. As a concrete example we walkthrough the case where radiology centers collaborate
with pathology test centers and a server for disease diagnosis. As shown in Fig. 2c radiology
centers holding imaging data modalities train a partial model upto the cut layer. In the same way
the pathology test center having patient test results trains a partial model upto its own cut layer.
The outputs at the cut layer from both these centers are then concatenated and sent to the disease
diagnosis server that trains the rest of the model. Iterative forward and backward passes are continued
until convergence.

3 RESULTS ABOUT RESOURCE EFFICIENCY

We share a comparison from Gupta & Raskar (2018) of validation accuracy and required client
computational resources in Figure 3 for the three techniques of federated learning, large batch
synchronous SGD and splitNN as they are tailored for distributed deep learning. As seen in this figure,
the comparisons were done on the CIFAR 10 and CIFAR 100 datasets using VGG and Resnet-50
architectures for 100 and 500 client based setups respectively. We empirically demonstrate that
SplitNN outperforms the techniques of federated learning and large batch synchronous SGD in terms
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Figure 3: We show dramatic reduction in computational burden (in tflops) while maintaining higher
accuracies when training over large number of clients with splitNN. Blue line denotes distributed
deep learning using splitNN, red line indicate federated averaging and green line indicates large batch
SGD.

of higher accuracies with drastically lower computational requirements on the side of clients. In tables
1 and 2 we share more comparisons from Gupta & Raskar (2018) on computing resources in TFlops
and communication bandwidth in GB required by these techniques. SplitNN again has a drastic
improvement of computational resource efficiency on the client side. In the case with a relatively
smaller number of clients the communication bandwidth required by federated learning is less than
splitNN. These improvements on the client side resource efficiency are even more dramatic due to
the presence of a smaller number of parameters in earlier layers of convolutional neural networks
(CNN’s) like VGG and Resnet in addition to the fact that computation is split due to the cut layers.
This uneven distribution of network parameters holds for the vast majority of modern CNN’s, a
property that SplitNN can effectively exploit.

Method 100 Clients 500 Clients
Large Batch SGD 29.4 TFlops 5.89 TFlops
Federated Learning | 29.4 TFlops 5.89 TFlops
SplitNN 0.1548 TFlops | 0.03 TFlops

Table 1: Computation resources consumed per client when training CIFAR 10 over VGG (in teraflops)
are drastically lower for SplitNN than Large Batch SGD and Federated Learning.

Method 100 Clients | 500 Clients
Large Batch SGD 13 GB 14 GB
Federated Learning | 3 GB 2.4 GB
SplitNN 6 GB 1.2GB

Table 2: Computation bandwidth required per client when training CIFAR 100 over ResNet (in
gigabytes) is lower for splitNN than large batch SGD and federated learning with a large number of
clients. For setups with a smaller number of clients, federated learning requires a lower bandwidth
than splitNN. Large batch SGD methods popular in data centers use a heavy bandwidth in both
settings.

4 CONCLUSION AND FUTURE WORK

Simple configurations of distributed deep learning do not suffice for various practical setups of col-
laboration across health entities. We propose novel configurations of a recently proposed distributed
deep learning technique called splitNN that is dramatically resource efficient in comparison to cur-
rently available distributed deep learning methods of federated learning and large batch synchronous
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SGD. SplitNN is versatile in allowing for many plug and play configurations based on the required
application. SplitNN is also scalable to large-scale settings and can use any state of the art deep
learning architectures. In addition, the boundaries of resource efficiency can be pushed further in
distributed deep learning by combining splitNN with neural network compression methods Lin et al.
(2017); Louizos et al. (2017); Han et al. (2015) for seamless distributed learning with edge devices.
Looking at combinations of split learning and differential privacy, secure multi-party computation is
an interesting direction for future work as well given that there has been active research in recent
times in all these areas.

5 SUPPLEMENTARY

5.1 SECONDARY CONFIGURATIONS

In this subsection we propose some more split learning configurations of splitNN for versatile
collaborations in health to train and infer from distributed deep learning models without sharing raw
patient data.

Extended vanilla split learning: As shown in Fig. 4a we give another modification of vanilla split
learning where the result of concatenated outputs is further processed at another client before passing
it to the server.

Configurations for multi-task split learning: As shown in Fig. 4b, in this configuration
multi-modal data from different clients is used to train partial networks up to their corresponding cut
layers. The outputs from each of these cut layers are concatenated and then sent over to multiple
servers. These are used by each server to train multiple models that solve different supervised
learning tasks.

Tor Syverson et al. (2004) like configuration for multi-hop split learning: This configura-
tion is an analogous extension of the vanilla configuration. In this setting multiple clients train partial
networks in sequence where each client trains up to a cut layer and transfers its outputs to the next
client. This process is continued as shown in Fig. 4c as the final client sends its activations from its
cut layer to a server to complete the training.
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Figure 4: Split learning configurations for health shows raw data is not transferred between the client

and server health entities for training and inference of distributed deep learning models with SplitNN.
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