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ABSTRACT

High-throughput screening techniques are commonly used in many fields of biol-
ogy. However, it is well known that non-biological artifacts arising from variabil-
ity in the technical execution of different experimental batches confound high-
throughput screens measurements. These batch effects obscure biological con-
clusions, and it is therefore necessary to account for them. While a number of
techniques have been proposed, to our knowledge there is not a publicly available
biological dataset designed specifically for the systematic study of batch effect
correction. To this end we announce the release of RxRx1, a set of 125,514 high-
resolution fluorescence microscopy images of human cells under 1,108 genetic
perturbations in 51 experimental batches across four cell types. Visual inspection
of the images by batch makes it clear that the set indeed demonstrates significant
batch effects. In this paper we describe the image set in detail. We also propose a
classification task designed to study batch effect correction on these images, and
provide some baseline results for the task. Our goal in releasing this image set is to
encourage researchers across various disciplines to develop effective methods for
removing batch effects that generalize well to unseen experimental batches and to
share these methods with the scientific community.

1 INTRODUCTION

High-throughput screening techniques are in common use in many biological fields, including genet-
ics (Echeverri & Perrimon, 2006; Zhou et al., 2014) and drug discovery (Broach et al., 1996; Macar-
ron et al., 2011; Swinney & Anthony, 2011; Boutros et al., 2015). Such techniques are capable of
generating large amounts of data that, when coupled with modern machine learning methods, could
help in answering fundamental questions in biology. These techniques may also help ameliorate the
problem of the exponential rise in the cost of developing an approved drug, which is now estimated
to be well over $2 billion (Scannell et al., 2012; DiMasi et al., 2016). However, creating such large
volumes of biological data necessarily requires the data to be generated in experimental batches, or
groups of experiments executed at similar times under similar conditions. Even when experiments
are carefully designed to control for technical variables such as temperature, humidity, and reagent
concentration, the measurements taken from these screens are confounded by non-biological arti-
facts that arise from variability in the technical execution of each batch. These batch effects create
factors of variation within the data that are irrelevant to the biological variables under study, but are
unfortunately often correlated with them. It is therefore necessary to correct for batch effects before
drawing any biological conclusions from measurements taken from high-throughput screens (Leek
et al., 2010; Parker & Leek, 2012; Soneson et al., 2014; Nygaard et al., 2016).

Many computational methods have been designed for dealing with batch effects (Leek et al., 2010;
Chen et al., 2011; Lazar et al., 2012; Parker & Leek, 2012; Leek et al., 2012; Goh et al., 2017;
Shaham et al., 2017), yet to our knowledge there are no publicly-available biological datasets that
were systematically created to study them. Here we announce the public release of such a dataset,
which we call RxRx1. The dataset consists of images of human cells under more than 1,100 different
genetic perturbations across 51 experimental batches and four cell types. We also propose a machine
learning task that gauges the effectiveness of the batch effect correction method — correctly classify
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Figure 1: 6-channel faux-colored composite image of HUVEC cells (left) and individual channels
(rest): nuclei (blue), endoplasmic reticuli (green), actin (red), nucleoli and cytoplasmic RNA (cyan),
mitochondria (magenta), and Golgi (yellow). The similarity in content between some channels is
due in part to the spectral overlap between the fluorescent stains used in those channels.

Figure 2: A 384-well plate. Experiments used to generate the images in this dataset were run in the
wells of such plates. Photo courtesy of Greiner Bio One International GmbH.

the genetic perturbation present in each image in a held-out set of batches. In order for the classifier
to generalize to unseen batches, it must learn to separate biological and technical factors in test
images and make predictions only on the biological factors.

This dataset and task will be of interest to the rapidly growing community of researchers applying
machine learning methods to complex biological data sets, especially those working with high-
content phenotypic screens (Angermueller et al., 2016; Kraus et al., 2016; Caicedo et al., 2017;
Kraus et al., 2017; Ando et al., 2017; Chen et al., 2018). The specific task of removing batch effects
is relevant to the broader life sciences community and can provide insights that enable researchers
to develop improved methods for working with other biological datasets. In addition, we hope the
dataset is of interest to the larger community of machine learning researchers working in computer
vision, especially those in the areas of domain adaptation, transfer learning, and k-shot learning.

2 DESCRIPTION OF THE DATASET

The image set was produced by Recursion Pharmaceuticals in its automated high-throughput screen-
ing laboratory. It is comprised of fluorescence microscopy images of human cells of four different
types — HUVEC, RPE, HepG2, and U2OS — which were acquired using a 6-channel variation of
the Cell Painting imaging protocol (Bray et al., 2016). In Figure 1, we show an example image.

The six channels of an image illuminate the different parts of the cell population in the field of
view: nuclei, endoplasmic reticuli, actin, nucleoli and cytoplasmic RNA, mitochondria, and Golgi.
The images themselves are the result of running 51 different instances of the same type of exper-
iment. Each experiment instance is comprised of four 384-well plates (see Fig. 2), used to isolate
populations of cells into wells. The wells are laid out on each plate in a 16×24 grid, but only the
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Figure 3: Images of four different siRNA phenotypes in HUVEC (same experiment and plate).

Figure 4: Images of the same siRNA in four cell types: HUVEC, RPE, HepG2, U2OS.

wells in the inner 14×22 grid are used since the outer wells are most susceptible to environmental
factors. Of these 308 usable wells, one remains untreated to provide a negative control. The rest
of the 307 wells receive exactly one small interfering ribonucleic acid, or siRNA, at a fixed con-
centration. Each siRNA is designed to knockdown a single target gene via the RNA interference
pathway, reducing the expression of the gene and its associated protein (Tuschl, 2001). However,
siRNAs are known to have significant but consistent off-target effects via the microRNA pathway,
creating partial knockdown of many other genes as well. The overall effect of siRNA transfection is
to perturb the morphology, count, and distribution of cells in each well, creating a distinct phenotype
associated with each siRNA. The phenotype is sometimes visually recognizable from the images,
but often the specific difference in cell morphology is subtle and hard to detect to the human eye
(see Fig. 3).

In each experiment, the same 30 siRNA appear on every plate as a control set for the plate. These
control siRNA target different genes and produce a variety of phenotypic effects that, taken in com-
bination with the single untreated well, provide a set of useful reference wells for each plate. The
1,108 remaining wells of each experiment (277 wells×4 plates) receive 1,108 different siRNA.
These non-control siRNA target different genes than each other and the genes of the control siRNA.
Notice that while the control siRNA appear on each plate, each non-control siRNA appears at most
once in each experiment. We say at most once because, although rare, it happens that either an
siRNA is not transferred into its well, resulting in an additional untreated well on the plate, or an op-
erational error is detected by quality control procedures and renders the well unsuitable for inclusion
in the dataset.

When the images were originally acquired from the microscope, they were of spatial resolu-
tion 2048×2048, but in order to make the dataset more manageable, they were downsampled to
1024×1024 and cropped to the center 512×512 field of view. The image set contains two non-
overlapping 512×512 fields of view per well. Therefore, there could be as many as 125,664 images
(= 51 experiments×4 plates/experiment×4 wells/plate×2 images/well), but, because of operational
errors, a number of images were removed, resulting in 125,514 actual images in the dataset.

As was mentioned, the entire dataset consists of 51 experiments: 24 in HUVEC, 11 in RPE, 11
in HepG2, and 5 in U2OS. Figure 4 shows the phenotype of a single siRNA in the four different
cell types. Each of the 51 experiments was run in a different batch, resulting in images that exhibit
technical effects (e.g. differences in temperature, humidity, siRNA concentration) that are common
to the batch but distinct from other batches (see Fig. 5). It is this feature of the dataset that makes it
particularly suited for studying batch effects and methods for correcting them.
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Figure 5: Images of two different siRNA (rows) in HUVEC cells across four experimental batches
(columns). Notice the visual similarity of images from the same batch.

Table 1: Average test accuracies for all cell types and per cell type.

Split All HUVEC RPE HepG2 U2OS
Batch 44.1% ± 5.7 56.7% ± 8.4 31.2% ± 2.7 30.8% ± 4.0 2.4% ± 1.0

Random 52.8% ± 0.0 68.9% ± 0.3 40.0% ± 0.9 39.7% ± 0.2 22.0% ± 0.4

The image set is accompanied by metadata providing the following information about each image:
cell type, experiment, plate, well location, and treatment class (1,138 siRNA classes plus one un-
treated class).

3 PROPOSED TASK FOR STUDYING BATCH EFFECT CORRECTION

While the dataset is useful for many types of studies (e.g. domain adaptation, k-shot learning), we
propose the following task for studying batch effect correction: correctly classify the images of non-
control siRNA in a hold-out set of batches. In order for a classifier to generalize well to unseen
batches, it must learn to separate biological factors associated with siRNA perturbation from tech-
nical factors associated with batch effects in the training batches, and use the biological factors for
classification. We illustrate this point with the following experiment. We subset the data to 42 ex-
periments (20 HUVEC, 9 RPE, 9 HepG2, 4 U2OS), and randomly chose 33 experiments for training
(16 HUVEC, 7 RPE, 7 HepG2, 3 U2OS) and 9 for testing (4 HUVEC, 2 RPE, 2 HepG2, 1 U2OS)
and trained a standard ResNet50 (He et al., 2016) on just the 1,108 non-control siRNA in the training
set. The image intensities were standardized by the means and standard deviations of the control
intensities per channel per plate. While training accuracies all reached near 100%, the average test
accuracy over three such batch splits of the data was 44.1%. To assess the extent to which batch
effects affected these results, we randomly split the 42 experiments again into training and test sets
of similar sizes, but without accounting for experiment so that samples from each experiment appear
in both the training and test sets. The average test accuracy in this case was 52.8%, or 20% higher
than when we split by batch. Table 3 summarizes these results, including test accuracies of models
trained on individual cell lines. Using this dataset, we hope researchers will design novel methods
for correcting batch effects and benchmark themselves against this classification task. To promote
this research, we are running a competition for this dataset and task later this year.
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