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ABSTRACT
For distributed machine learning with health data we demonstrate how minimizing
distance correlation between raw data and intermediary representations (smashed
data) reduces leakage of sensitive raw data patterns during client communications
while maintaining model accuracy. Leakage (measured using KL Divergence
between input and intermediate representation) is the risk associated with the in-
vertibility from intermediary representations, can prevent resource poor health or-
ganizations from using distributed deep learning services. We demonstrate that
our method reduces leakage in terms of distance correlation between raw data
and communication payloads from an order of 0.95 to 0.19 and from 0.92 to 0.33
during training with image datasets while maintaining a similar classification ac-
curacy.

1 INTRODUCTION
Data sharing and computation with security, privacy and safety have been identified amongst most
important current trends in healthcare (Stanford, 2018; Avancha et al., 2012; Halperin et al., 2008).
Hosting of multi-modal data by multiple healthcare entities that do not trust each other due to sensit-
ivity and privacy issues poses to be a barrier for distributed machine learning. This paper proposes a
way to minimize reconstruction of raw data in distributed machine learning by minimizing distance
correlation measure between raw data and any intermediary communication between entities while
maintaining model accuracies. Our proposed solution makes it apt to empower resource and staff
constrained local health centers to collaboratively train distributed deep learning models without any
raw data sharing.

1.1 RELATED WORK

Distributed deep learning methods: Split learning (Gupta & Raskar, 2018; Vepakomma et al.,
2018a) is a recently developed resource efficient method for distributed deep learning by sending
intermediate representations (smashed data) of split layer to another entity which completes rest of
the training. Other existing distributed deep learning methods include federated learning (Konečnỳ
et al., 2016; McMahan et al., 2016) and large batch synchronous stochastic gradient decent (SGD)
Chen et al. (2016). Our proposed method is a significant improvement of these methods in terms of
reducing leakage of raw data patterns in any communications during the training of distributed deep
learning models.

Distance Correlation methods: Our method is based on minimizing a statistical measure of de-
pendence called distance correlation introduced in Székely et al. (2007) between raw data and
all intermediary communications shared between entities partaking in distributed learning while
still maintaining model accuracies in the context of split learning. Distance correlation has been
used in recent non-deep learning applications including causal inference Liu & Chan (2016), sure-
independence screening Li et al. (2012), hypothesis testing Sejdinovic et al. (2013), supervised
dimensionality reduction Vepakomma et al. (2018b) and embeddings of distributions Muandet et al.
(2017). Negative log of distance correlation has been used in the context of deep learning for super-
vised autoencoders Wang et al. (2018) where the goal is supervised dimensionality reduction and
not for preventing reconstruction of raw data as in our case.

1.2 CONTRIBUTIONS

Our main contribution is a new technique that reduces invertibility of intermediate representations
(leakage) using distance correlation and we demonstrate this in the context of split learning. We do
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this by ensuring the communication payloads have a low distance correlation with raw input data
while still maintaining their accuracy in predicting the output labels. We show how minimizing
distance covariance minimizes product of KL divergences between intermediate representations and
input.

2 METHOD

We now describe the key idea of split learning as part of the background for rest of this paper and
we then describe our method that improves upon split learning for reducing the leakage of patterns
in distributed deep learning. In the simplest of configurations of split learning each client forward
propagates a partial deep network up to a specific layer known as the split layer. The outputs at
the split layer are sent to another entity (server/another client) which completes the rest of training
without looking at raw data from any client that holds the raw data. The gradients are now back
propagated again from its last layer until the split layer in a similar fashion. The gradients at the
split layer (and only these gradients) are sent back to clients. The rest of back propagation is now
completed at clients. This process is continued until the distributed split learning network is trained
without looking at each others raw data. The only communication payloads in split learning are
transformed versions of raw data obtained at the intermediary deep learning layer known as the split
layer as described above as against to federated learning where the entire model and weights are
shared and updated by all entities.

Figure 1: In our method log of
distance correlation between raw
input data and activations at split
layer is minimized for privacy
and categorical cross entropy loss
between split activations and out-
put labels is optimized for classi-
fication accuracy. The total loss
is a weighted combination of these
two losses.

Figure 1 shows the architecture of our proposed method. The
layers in the network are divided across the distributed entit-
ies based on the split layer as shown in the Figure. The loss
function for the network is a combination of two losses of
log distance correlation Székely et al. (2007) and categorical
cross entropy used before and after split layer respectively.
Distance correlation is a measure of non-linear (and linear)
statistical dependence, and we reduce the log of distance cor-
relation (DCOR) between the raw data and activations at the
split layer during the training of the network. The categorical
cross entropy (CCE) is optimized between predicted labels and
ground-truth for classification. The total loss function for n
samples of input data Xn, estimated split layer activations Ẑ,
true labels Yn, predicted labels Ŷ and scalar weights α1, α2

is given by

α1DCOR(Xn, Ẑ) + α2CCE(Yn, Ŷ) (1)

3 CONNECTION:
DISTANCE CORRELATION AND INVERTIBILITY

We use Kullback-Leibler divergence as a measure of invert-
ibility of smashed data. In this section we derive a connection between distance covariance
DCOV (X,Z) which is an unnormalized version of distance correlation and information-theoretic
measures of Kullback-Leibler divergence DKL and cross-entropy H . From Vepakomma et al.
(2018b) we have that the sample statistic of distance covariance can be written in terms of cov-
ariance matrices Cov(X), Cov(Z).

DCOV (X,Z) = Tr(XTXZTZ) (2)

= n2Tr (Cov(X).Cov(Z)) ( X, Z are mean centered)

By arithmetic-geometric mean inequality we now have,

Tr (Cov(X).Cov(Z)) ≥ det(CovZX) det(CovXZ) (3)

where CovZX is the cross-covariance matrix and det(CovZX) is cross-entropy H(X,Z). But KL
divergence is directly related to cross-entropy as

DKL(X||Z) = H(X,Z)−H(X) (4)
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Therefore combining the equations above we have the required result that minimizing distance co-
variance DCOV (X,Z) minimizes the product of KL divergences DKL(X||Z)DKL(Z||X) with a

deviation 1 of ±
√

log(6/δ)
0.24N + C

N with probability at least 1− δ.

Regularizing distance covariance DCOV (X,Z) with ‖X− Z‖+ ‖Z‖ gives us

DCOV (X,Z) = Tr(XXTZZT) + ‖X− Z‖+ ‖Z‖ (6)

We would like to bound the difference of KL divergences DKL(Z||X)−DKL(X||Z). Minimizing
this difference can be interpreted as X being a good proxy dataset to construct Z but not as vice-
versa interms of reconstructing X from Z . This difference can be written in terms of cross-entropy
and entropy terms as

DKL(Z||X)−DKL(X||Z) = H(Z,X)−H(Z)−H(X,Z) +H(X) (7)

and this can be written in terms of determinants of covariances as

= det(ZTX)− det(ZTZ)− det(XTZ) + det(XTX)

This can be bounded using Hadamard’s inequality as

det(ZTX)− det(ZTZ) + det(XTX)− det(XTZ) ≤
∥∥ZTX− ZTZ
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Therefore these fractional terms can be minimized by minimizing
∥∥ZTX

∥∥
2

and
∥∥ZTZ

∥∥
2

as the
sums of products of decreasing functions of norms are also decreasing. By Cauchy-Schwarz in-
equality

∥∥ZT(X− Z)
∥∥ ≤ ‖Z‖ ‖X− Z‖.

Therefore the upper-bound on difference of KL-divergence can be minimized by minimizing ‖Z‖
and ‖X− Z‖ to minimize terms
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3.1 SIMILARITY AND AFFINE INVARIANCE OF DISTANCE CORRELATION

Distance correlation is also invariant Székely et al. (2007) to transformations of the form X 7→
a1 + b1C1X and Y 7→ a2 + b2C2Y where a1, a2 are arbitrary vectors, b1, b2 are arbitrary nonzero
numbers and C1, C2 are arbitrary orthogonal matrices. and also alternate versions of distance cor-
relation that achieve affine invariance exist Dueck et al. (2014). These are highly suitable properties
for computer vision given that a leakage reduction measure should be able to find a representation
beyond a simple orthogonal group transformation.

1Sejdinovic et al. (2013) shows an equivalence between distance correlation and another popular measure
of statistical dependence called Hilbert Schmidt independence criterion (HSIC) by just a constant. 2 is based
on empirical estimate of DCOV which comes with an Hoeffding bound around its true estimate, Gretton et al.
(2005) as

|DCOV (pxy,F ,G)−DCOV (Z,F ,G)| /
√
log(6/δ)

0.24n
+
C

n
(5)

with probability at least 1− δ.
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4 EXPERIMENTS

In this section we share our experimental results with our proposed method of NoPeekNN which
is an improvement over the Vanila SplitNN (split learning) method in terms of leakage reduced via
distance correlation. We run experiments with a dataset of colorectal histology images without any
data augmentation. In Figure 2 we share some example images from this dataset along with cor-
responding class labels. In Figure 3, we show that our technique NoPeekNN converges to a similar
validation accuracy of 0.69 as the VanillaSplitNN 4. In Figure 5 we show the reduction in distance
correlation between smashed data and raw data with respect to increasing epochs by NoPeekNN over
the colorectal histology image dataset. We show that this leakage distance correlation is drastically
reduced from 0.92 in Vanilla SplitNN to 0.33 in NoPeekNN. We also show that even in the first few
epochs the leakage distance correlation has been minimized to less than 0.46 thereby not allowing
any leakage during the training. In Figure 6 we perform the same experiment over the MNIST hand-
written recoginition dataset and again show a drastic reduction from a distance correlation of 0.95 in
traditional convolutional networks (CNN) and Vanilla SplitNN to about 0.19 in NoPeekNN. We also
observe that even in the first few epochs the leakage distance correlation is contained below 0.34. In
Figures 7, 8 we show via a NoPeekNN architecture for autoencoders that the privatized split layer
prevents reconstruction of raw images by decoder layers. The layer in between the encoder and
decoder layers is made the split layer. This shows that the proposed NoPeekNN is able to block the
flow of critical information required for reconstriction of raw data in this experiment with increasing
levels of α1 in our loss function as desired. As a baseline, this same architecture upon removing the
split layer was in comparison reasonably able to reconstruct the images. In Figures 10, 11 we show
the convergence plots of validation accuracy for NoPeekNN on MNIST data with increasing levels
of α1. As expected in the convergence plots for colorectal image dataset as well as MNIST dataset
we observe that we drastically reduce leakage while maintaining high accuracy levels at the cost of
requiring to run for more epochs.

Figure 2: Some example classes from images of colorectal histology dataset. This dataset was used
in our experiments to measure i) reduction in distance correlation between raw data and smashed
data and ii) preservation of model accuracy

5 CONCLUSIONS

In this paper we show how to minimize the distance correlation between the smashed data and raw
input while reducing classificational cross entropy. We experimentaly demonstrate how our tech-

Figure 3: Convergence of validation
accuracy in NoPeekNN over colorectal
histology image data

Figure 4: Convergence of validation ac-
curacy in Vanilla SplitNN of colorectal
histology image data
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Figure 5: Reduced leakage during train-
ing over colorectal histology image
data from 0.92 in traditional CNN and
Vanilla SplitNN to 0.33 in NoPeekNN

Figure 6: Reduced leakage during
training over MNIST handwritten di-
git image data from 0.95 in traditional
CNN and Vanilla SplitNN to 0.19 in
NoPeekNN

Figure 7: α1 = 0.1 Figure 8: α1 = 0.9

Figure 9: *
In Figures 7,8 reconstruction results from NoPeekNN experiment for autoencoder shows that the
privatized split layer prevents reconstruction of raw MNIST data with increasing levels of α1.

Figure 10: α1 = 0.05 Figure 11: α1 = 0.15

Figure 12: *
Epochs Vs. accuracy plots on MNIST show that it takes a larger number of epochs for larger values

of α1 to reach a higher accuracy as expected in NoPeekNN.
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nique can both reduce the leakage (distance correlations) and achieve accuracy when we implement
it in the context of split learning applied over health datasets. We hope our method can pave way
for remote communities to pool together health data during emerging threats like epidemics or slow
moving threats like obesity or diabetes.
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