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ABSTRACT

Digital devices have become an essential part of modern life. However, it is
much more difficult for less able-bodied individuals to interact with them. As-
sistive technology based on facial gestures could potentially enable people with
upper limb motor disability to interact with electronic interfaces effectively and
efficiently. Previous studies proposed solution that can classify predefined facial
gestures. In this study, we build a customizable facial gesture recognition sys-
tem using the Prototypical Network, an effective solution to the few-shot learning
problem. Our second contribution is the insight that since facial gesture recogni-
tion is done based on tracked landmarks, a training set can be synthesized using a
graphics engine. We show that our model trained using only synthetic faces can
perform reasonably well on realistic faces.

1 INTRODUCTION

Although electronic devices make daily activities more convenient for the able-bodied population,
these benefits are rarely experienced by individuals who suffer from upper limb motor disability due
to the difficulty to interact with standard interfaces. Assistive technologies (AT) that facilitate in-
teractions between the motor-impaired individuals and computers has been a long-standing research
problem in the human-computer interaction community (Istance et al., 1996).

With the rapid development of computer vision technologies, facial gestures based interaction be-
comes promising. Recently, Rozado et al. (2017) showed the effectiveness of their open source
facial gestures based accessibility software: the FaceSwitch.

FaceSwitch combines using a eye-gaze tracker for moving the mouse and mapping facial gestures
into discrete actions (e.g., mouse click and user selected keystrokes). The gaze-tracking is im-
plemented using the combination of the Tobii X2-30 eye tracker and its companion Control Soft-
ware. The contribution of Rozado et al. (2017), other than the final integrated system, is their
proposed facial gesture recognition algorithm. They use the Beyond Reality Face Nxt tracker
(https://www.beyond-reality-face.com/) for real-time facial landmark tracking. The
outputs of the tracker are 68 2-dimensional points. Four pairs of points are chosen for each sample,
and the detection of each of the four actions is done by comparing the distance between each tracked
pairs to a manually decided threshold (See Figure 1).

For the 3-way classification task (i.e., ‘raising eye brow’,‘twitching nose’ and ‘opening mouth’),
FaceSwitch is roughly 79% accurate, while the accuracy dropped to the high 60’s for classification
on the four gestures. For detailed performance analysis, we refer the reader to Rozado et al. (2017).

Customization The motivation for the present study is that not all targeted users would be equally
capable of making the same predefined facial gestures. A more user-friendly approach should allow
users to specify what gestures they would like to use through only a few enrollment images.

This study focuses on the problem of facial gesture recognition. To allow for customization, we
modify the Prototypical Network (PN) to learn a embedding where facial gesture classification can
be achieved using only a few enrollment examples at test time (Snell et al., 2017). Our second
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Figure 1: Illustration of the threshold based facial gesture detector in Rozado et al. (2017). Each of
the double-ended arrows points to the pair of tracked points used for making decisions for one of
the four predefined facial gestures.

contribution is the use of the AutoDesk Maya software for synthesizing our training set, eliminating
the need for the tedious and time consuming process of data collection and annotation. The resulting
system, trained on only synthetic faces, can classify real faces with reasonable accuracy. The results
of this study suggest that using data generated from a graphics software can train a deep embedding
model useful for gesture classification on real faces.

2 BACKGROUND

Prototypical Networks (PN) is an effective algorithm for solving the few-shot classification prob-
lem (Snell et al., 2017). The few-shot problem was motivated by the phenomenon that humans can
usually learn about new concepts quickly through only interacting with a handful of examples (Lake
et al., 2015). At test-time, a trained model is given a small support set, S = {(xi, yi)}NS ·NC

i=1 of new
concepts (e.g., unseen classes) to learn from. Here NS and NC denote the number of supports per
class and the number of classes, respectively. They are also commonly referred to as the ‘shot’ and
‘way’, respectively. Each x represents an input vector and yi ∈ {1, ..., k} is the class label for xi.
The performance is evaluated on a query set Q = {qi}

NQ

i=1. We will refer to each of the (learning
S + evaluation Q) stage as one episode E (i.e., E = (S,Q)). In standard benchmarks, models are
often evaluated on many episodes {Ej}Mj=1 at test time.

For our purposes, a deployed model should be capable of quickly learning facial gestures of a new
user with a few enrollment images. In the few-shot jargon, this means that a new user can customize
the model by providing a support set of facial gestures.

A popular approach to train such model is through episodic training. Intuitively, this is a training
procedure that mimicks the way of how the model will be evaluated at test-time. Using PN, a query
q is classified based on how close it is to the class prototype µc of class c:

pφ(y = c|q) = exp(−d(fφ(q),µc))∑
c′ exp(−d(fφ(q),µc′))

, (1)

µc =
1

|Sc|
∑

xi∈Sc

fφ(xi), (2)

where d(·, ·) is a distance function such as the Euclidean distance, Sc is the support set of class c,
and fφ is a neural network with learnable parameters φ. The PN loss per episode is

LPN = −
∑

(q,c)∈Q

log pφ(y = c|q) (3)

Algorithm 1 is a simple description of episodic training, where Ctrain denotes classes in the meta-
train set, DX the set of training examples in the set of classes in X . RANDOMSAMPLE(s, n) ran-
domly selects n elements from the set s.

One important prerequisite that makes episodic training successful is the availability of a large
training set. This is sometimes overlooked due to the name and description of few-shot learning.
For example, the most popular benchmark dataset, the Omniglot dataset, has a total of more than
one thousand classes of different handwritten characters. Hence, applying the technique of few-shot
learning or specifically using PN for a new problem can be ineffective due to the lack of a large
training set (i.e., few examples per class, but many classes). We will discuss how this problem is
addressed for our task in Section 3.
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Algorithm 1 Episodic training
1: while not converged do
2: V ← RANDOMSAMPLE(Ctrain, NC) . randomly select classes
3: for c in V do . for each class
4: Sc ← RANDOMSAMPLE(D{c}, NS) . select the support set
5: Qc ← RANDOMSAMPLE(D{c} \ Sc, NQ) . select the query set
6: end for
7: φ← φ− α∇LPN
8: end while

3 METHOD

Our insight is that, since tracked landmarks were shown to be useful and robust representation for
classification of facial gestures in Rozado et al. (2017), they would also be good candidate as inputs
for the PN. Since the tracked landmarks are invariant to most variations in a natural facial image
(e.g., lighting, skin tone, texture and so on), we can replace the laborious effort of collecting a
training set of real faces with synthesizing faces of different gestures using a graphics software.

Synthetic Training Set For synthesizing training faces with different expressions, we use the rig
provided by the JALI project based on the AutoDesk Maya software (Edwards et al., 2016). A rig is
a model of an animated object that can be easily controlled by a handful of attributes. The rig from
JALI has attributes such as ‘grimace’, ‘pucker’, and squinting each of the eyes. We manually went
through all the attributes and selected 15 that do not correspond to similar gestures to encourage
diversity in our samples (See Figure 2).

Figure 2: Examples of faces of which each has one of the selected attributes turned on.

To generate our training set, we created 225 classes by randomly turning on 2 of the 15 selected
attributes fully. For samples in each class, we perturb the off attributes by roughly 10% using noise
from a uniform distribution to account for the diversity of real faces. 20 samples are generated for
each class, resulting in a training set of 4500 examples.

Modified PN The key modification to PN is to use the landmark features as input x. 1 Since now x
is a 136-dimensional vector instead of an image, we replace the original ConvNet architecture with
a fully-connected MLP with 3 hidden layers of 64 units. We also use BatchNorm (Ioffe & Szegedy,
2015) and ReLU activation (Nair & Hinton, 2010).

4 EXPERIMENTS

As observed in Snell et al. (2017), using different numbers of way and shot during training can affect
the performance at test time. The heuristics is to use a slightly higher train way and same shot as the
test episodes. Since the suggested mode of operation in Rozado et al. (2017) is to turn on one of the
3 gestures at a time, we evaluate our model on the real faces in the 3-way setting.

Table 1 shows results on both the synthetic Maya faces and real faces. The synthetic dataset is split
into a training set of 200 training classes and 25 validation classes. Using more shots during training
naturally increases the training accuracy. However, there is no observed trend among the validation
performances. Using a higher way in training improves validation performance.

1we used the Python version of http://dlib.net for landmark extraction.
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Training Setup Accuracy on Maya faces Accuracy on Real faces, 3-way (mean, std)
N-way k-shot Train Val (5-way, 3-shot) 1-shot 3-shot 5-shot

3
1 72.5 87.1 -
5 94.0 93.3 73, 12 82, 9 90, 6

10 98.6 95.2 -

5
1 78.0 96.9 -
5 98.4 92.3 57, 6 69, 14 78, 9

10 93.2 92.1 -

10
1 82.0 99.3 -
5 96.8 97.3 66, 9 67, 11 66, 8

10 96.6 98.4 -

50
1 86.6 99.5 -
5 91.4 99.8 79, 6 82, 4 85, 5

10 94.4 98.9 -

Table 1: Classification accuracy of our method. Evaluation on the real faces are done in the 3-way
setup. Evaluation on the real faces are only done on the 5-shot trained models. The results on the
real faces are from 3 trial runs.

Then, we choose models trained in the 5-shot setting to evaluate on the real faces that were collected
manually. The real faces dataset was prepared by taking ten photos of each of the three expressions
from one human subject. Between repetition of the same expression, the subject is asked reset to a
neutral face. Increasing the shot of real faces increases the accuracy, but this comes with the tradeoff
that users would need to register more enrollment images. Our model trained on the 50-way setting
can achieve an classification accuracy of roughly 80% on real faces even when only one enrollment
image is provided and reach 85% with five enrollment images.

5 RELATED WORK

Facial gesture recognition Back in 1978, the Facial Action Coding System (FACS) defined rep-
resentation of facial expression by specific action units (AU) and their temporal segments that pro-
duced the expression (Friesen & Ekman, 1978). Since then, researchers have studied better repre-
sentation for facial expression recognition (De la Torre & Cohn, 2011; Martinez & Du, 2012; Valstar
et al., 2012). Many existing works were based on laboratory datasets and perform classification on
a prefixed set of expressions and AU (Chu et al., 2013; Chen et al., 2013). Little work has been
done that focuses on personalized systems in realistic scenarios. Zen et al. (2016) presented a trans-
fer learning approach that could learn the mapping between person-specific sample distributions
and between parameters of corresponding classifiers. Our approach focuses on allowing users to
customize by utilizing the Prototypical Network (Snell et al., 2017).

ATs based on facial gestures Various ATs based on facial gestures were created for motor dis-
abilities (Kouroupetroglou, 2013). Astler et al. (2011) utilized facial gesture recognition to relay
nonverbal messages to blind individuals. Karpov et al. (2011) proposed a bi-modal interface using
both speech recognition and facial gesture recognition. Wang et al. (2018) created a wearable inter-
face for motor disabled individuals to play games. Our work utilizes the same facial landmark as
FaceSwitch, which is an open source software to help motor-impaired people interact with comput-
ers (Rozado et al., 2017).

Sim2Real Neural Networks Lastly, one of our contributions is to utilize a graphics engine for
generating the training set whereas the final model is tested on realistic images. The idea of using a
rendering engine for tasks based on realistic images was shown to be very effective in Shrivastava
et al. (2017), where they used a rendering engine to synthesize images of the eye to improve eye
gaze regression on realistic eye images.

6 CONCLUSION

In this study, we present a novel method that allows AT based on facial gestures recognition to be
customizable. This is achieved using a modified Protoypical Network that takes in tracked landmarks
as inputs. Our second contribution is the insight that since the classification is done based on tracked
landmarks, a large training set can be generated using a graphics engine. Finally, we show that our
model trained only on synthetic images can perform reasonably well on realistic faces.
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