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Abstract

A major challenge in pre-natal healthcare delivery is the lack of devices and clin-1

icians in several areas of the developing world. While the advent of portable2

ultrasound machines and more recently, handheld probes, have brought down the3

capital costs, the shortage of trained manpower is a serious impediment towards4

ensuring the mitigation of maternal and infant mortality. Diagnosis of pre-natal5

ultrasound towards several key pre-natal health indicators can be modelled as an im-6

age analysis problem amenable to present day state-of-the art deep learning based7

image and video understanding pipelines. However, deep learning based analysis8

typically involves memory intensive models and the requirement of significant9

computational resources, which is a challenging prospect in point-of-care health-10

care applications. With the advent of portable ultrasound systems, it is increasingly11

possible to expand the reach of automated prenatal health diagnosis. To accomplish12

that, there is a need for lightweight architectures that can perform image analysis13

tasks without a large memory or computational footprint. We propose a lightweight14

convolutional architecture for assessment of ultrasound videos, suitable for those15

acquired using mobile probes or converted from a DICOM standard from portable16

machines. As exemplar of approach, we validated our pipeline for fetal heart17

assessment (a first step towards identification of congenital heart defects) inclusive18

of viewing plane identification and visibility prediction in fetal echocardiography.19

This was attempted by models using optimised kernel windows and the construction20

of image representations using salient features from multiple scales with relative21

feature importance gauged at each of these scales using weighted attention maps22

for different stages of the convolutional operations. Such a representation is found23

to improve model performances at significant economization of model size, and24

has been validated on real-world clinical videos.25

1 Introduction26

A key aspect of the UN Sustainable Development Goals relates to improving reproductive, maternal,27

newborn and child health. A primary angle to the improvement of maternal and pre-natal health is the28

adequate monitoring and assessment of fetal growth and abnormalities, so as to devise prognostic and29

diagnostic measures in the event of possible adverse outcomes such as borth anomalies and congenital30

diseases, the management and cure for some of which require advanced pre-planning even prior to31

birth due to the technological and capital requirements involved in the management and redressal of32

several such birth anomalies. Fetal ultrasound is the primary technique for prenatal health monitoring33

and diagnosis, with several other modalities being restricted. Particularly, Congenital Heart Diseases34

(CHDs) are responsible for driving infant mortality with rates being 8 in 1000 live births [4], and is35

therefore a good case study for assessing the efficacy of automated point-of-care systems for pre-natal36

healthcare delivery. Despite the universally acknowledged applications for ultrasound, systems of37
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image acquisition continue to be expensive and trained manpower is in short supply. Thus, usage of38

automated image analysis systems built using machine learning algorithms is a potential avenue for39

improving fetal health monitoring. In recent years, as deep learning based approaches became popular40

for image processing applications, the size, computational requirements and complexity of models41

along with data requirements remained a bottleneck towards deployment for point-of-care applications42

for medical image analysis, despite rapid development in hardware for acquiring ultrasound scans with43

the help of portable probes and mobile devices. An important clinical step in fetal heart ultrasound44

characterisation, and essential for prognosis relevant to detetcion and management of CHDs, is the45

visibility inference (whether or not the heart is visible in the frame) and the standard viewing plane46

(4-chamber, 3-Vessel or Left Ventricular Outflow Tract/LVOT) identification. While deep learning47

methods rely on end-to-end classifications by the feature learning and aggregation capabilities of48

convolutional networks, we propose to leverage the presence of specific objects and anatomical49

features defining a viewing plane at multiple scales through a measure of relevance imposed by50

progressive attention modules [2]. This self-contained measure of importance of features in input51

allows the models to train only on the features most relevant to the classes under study at the expense52

of background, thereby reducing the size of the parameter space for such characterisation. This53

idea leads us to explore the possibility of using attention layers to improve predictive accuracies of54

lightweight architectures developed for mobile vision application [2,3].55

2 Methodology56

We attempt to improve the state of mobile ultrasound interpretation by constructing memory efficient57

mobile deep learning architectures and augmenting the capacity and classification accuracies of the58

lightweight models so developed by incorporation of an element of hierarchical prioritization of59

information in the feature space through the use of stage-wise attention maps in the convolution60

architecture. The idea is that while the usage of customised convolutional layers that use sets of 1x161

and 3x3 filters, with the former serving to impose separation in the depth level of the feature maps,62

can reduce model size and computational cost, this comes at a reduction in the number of parameters63

(not necessarily redundant). Such a reduced parameterization without controlling for parameter64

importance to network decisions adversely affect performance for the given task. This performance65

loss is reduced in the presented approach by the use of weighted attention mechanisms, where the66

input images are partitioned into zones that are subsequently weighed to evaluate their contribution67

towards the final classwise conditional likelihood for the whole image. Such attention based weighing68

allows improvement in classification without reliance on extraneous model parameters. The role of69

attention mechanisms in visual understanding of CNNs have been an area of active research. We70

attempt to identify spatial cues that are most salient in informing the decisions by the convolutional71

network on the given input. With the parameter budget being constrained for model efficiency,72

we draw inspirations from the human mind’s ability to extract relevant information from a scene73

towards forming representative knowledge. This is replicated by having a weighted parameterisation74

of obtained attention maps so as to magnify the impact of the most relevant features in the input75

space and subdue the background towards final classification probability distributions obtained at the76

softmax probability layer (Fig. 1). This is effectively a trainable mobile attention module, and can be77

used at multiple locations in the architecture. The base architecture is inspired by the aggregation78

of squeeze and excite modules introduced in [1] by substituting larger kernels with 1x1 kernels in79

multiple layers and using 1x1 plus 3x3 kernels in alternate layers with the proportion of 3x3 filters80

gradually increased to account for the complexity of neighborhood fine information in higher levels.81

Each layer, represented as a set s ε {1,. . . ,S}, is developed by a set of 1x1 and 3x3 filters that generate82

the corresponding feature maps for every member of s as Fs={f1 s, f2 s,. . . , fn s}. This specific83

manner of representing feature maps is due to our interpretation that every member of the feature84

map set, fi s, encodes the activations of spatial location i in layer s (each spatial location i is a square85

region of a 100 x100 grid overlaid on a 2D feature map, so 1<=i<=n, n=100). With different feature86

map dimensions across layers, the vector Fs has a variable length dimensions for constituent region87

based encodings. This is resolved using a linear mapping for each of the three sets of Fs obtained to88

map them to the dimension of that obtained using the final fully-connected layer F
′′s, followed by a89

dot product evaluation of each member of Fs with F
′′s. This rationalisation with respect to the final90

fully connected layer has an additional effect of capturing the overall global representation of the91

input image as well. To obtain weighted attention over multiple layers, a softmax operation is applied92

over the region-wise dot products with the final encoding. The attention weights so obtained are93
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Figure 1: The overall architecture with attention maps at different stages. This is a representation
of the configuration SN-att-2. For SN-att-1, the only attention map is after FC-512. There is a dot
product with itself before being converted to the attention weight vector in that case, and this is
followed by global concatenation towards creating the attention based representation.

Table 1: Performance of our attention driven models

Classification Accuracy (percentage)

Method 4C 3V LVOT Non-standard/BG Overall

Baseline [1] 85.42 70.14 65.71 80.13 75.35
SN-att-1 86.38 78.20 66.12 84.32 78.76
SN-att-2 88.60 78.95 69.34 83.52 80.10

assigned to each grid region defined for the attention map, and thus are a measure of the contribution94

of such a region to the overall loss function.95

ai s = exp(<fi s,F
′′s>)/

∑n
j exp(<fi s,F

′′s>) , where <,> represents the dot product operation, 1<=i<=n,96

n=100 here97

The attention weights {a1 s, a2 s,. . . , an s} so obtained are used to construct the global weighted98

attention per feature map ms
a =

∑n
i as i fs i and concatenated to obtain a final layer M= [m1

a, m299

a,. . . , mS
a] called the Final Image Attention Map in Fig.1, (S=3 in our case). This is followed by a100

fully-connected layer FC-4 in Fig.1 with C nodes (C is the number of classes considered, C=4 here)101

for operations of softmax classification loss functions to obtain a classwise probability map. Thus, in102

effect, the concatenation of the weighted attention maps is used as a substitute for the fully-connected103

layer driven global image representation for image classification. This operation ensures that different104

feature regions at multiple scales of processing in convolutional stages are weighted directly and used105

to inform the final softmax cross-entropy classifier, instead of just using the fully-connected layer106

obtained by sequential convolutional operations.107
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3 Results108

We start with a limited number of 91 cardiac screening videos from 12 subjects with gestational ages109

ranging from 20 and 35 weeks during routine clinical scans. The duration of each video is between 2110

and 10 seconds and a frame rate of 25 to 76 frames per second (39556 frames in total). It contained111

one or more of the three views of the fetal heart and some background frames. Videos from 10112

patients are used for training, and the remaining 2 for test experiments. For training, we split available113

videos into frames and apply data augmentation by an updown and a top-bottom flipping. . Individual114

frames of size 430 x 510 are cropped into 224 x 224 centred about the heart centre, which was known115

in the ground truth annotations. The models are trained using a batch size of 25 with a learning rate116

of 0.001. A training:test split of 80:20 is used. The base architecture has no pooling layers till the117

fifth 1x1-3x3 layer module to make feature maps available at a higher resolution to make regional118

attention proposals optimally informative. We derive our attention maps from layer modules 5, 9119

and 14. These maps are obtained as a set of encodings from a grid of regions obtained by dividing120

the two-dimensional feature map in a 100 x 100 patch set. The encodings have associated weights121

parameterized by a weight matrix. In the absence of established baselines in prior work for mobile122

based classification in fetal echocardiography datasets, we compare the results obtained for with a123

standard SqueezeNet architecture [1] adapted for handling our ultrasound image data, and our base124

model with attention (SN-att- 1 and SN-att-2 with SN-att-1 aggregating the attention layer from the125

final fully connected layer and assuming different sections as representative of grid-regions in the prior126

feature maps) for a classification of visibility and viewing planes in fetal echocardiography images.127

The attention-based approach yields a notable performance improvement despite a negligible addition128

to the model size (1.90 MB in baseline without attention vs 2.24 MB in SN-att-2), with the overall129

baseline SqueezeNet accuracy of 75.35 exceeded by both versions of our attention based architectures130

(78.76 and 80.10). The original SqueezeNet model adapted for this architecture is a heavier model131

as well. Additionally, the inclusion of weighted attention improves performance in case of difficult132

classes like 3V (78.20 and 78.95 vs 70.14 in baseline) and LVOT (66.12 and 69.34 vs 65.71). This is133

because the weighted attention model allows enhanced reliance on finegrained discriminative features134

and relatively ignores less-important features in the classification stages. The strategy to include135

attention layers from different sections of the network as different sections learn different attributes of136

the image is proven to enable better aggregation of salient features through the improvement by from137

SN-att–1 (78.76) to SN-att-2 (80.10). To conclude, the ability of attentive classification to focus on138

relevant features and diminish the role of the background effectively is reflected in the improved top-1139

accuracies listed. Such an improvement without a large model complexity addition is of importance140

in low-compute environments as in mobiles and EDGE devices in the clinical ultrasound space.141

It is worth considering comparisons with quantization models, direct classification baselines from142

deeper architectures and attention grids with variable resolutions. As of now, this work has been143

attempted with competitive accuracies on actual clinical echocardiography videos, after conversion144

from the DICOM standard to standard avi formats, which are them processed in our pipelines (the145

video preparation and the learning/inference stages are therefore separate here). This conversion, is146

integrated into our method. As future extension to the validations presented, it would be worthwhile147

to port the pre-trained models directly onto mobile or other devices along with integration to support148

input video streams derived using connected probes, similar to the demonstrations attempted for149

ultrasound to mobile video conversions using handheld probes by industry players like Butterfly150

Network Inc, Clarius and so on. That way, the processing and diagnosis step can be integrated with151

the real-time acquisition and the whole pipeline can be used end-to-end, with a possible foward152

integration to cloud services for later quality and diagnosis checks by qualified physicians located153

physically away from the patient locations.154
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