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Abstract

Remote health monitoring systems for rural infrastructure lack the advanced analy-
sis offered by digital infrastructure due to operational constraints, such as limited
data-transmission bandwidth and power supply, in these extreme locations. To
overcome this, we present a novel approach of predicting failure (condition mon-
itoring) in rural handpumps by distributing work between inexpensive systems
embedded within the handpumps and a computationally-powerful cloud server
that communicates with the handpumps [1]. Proof-of-concept work in rural Kenya
correctly predict more than two thirds of failure events in handpumps where over
70,000 people in schools, communities, clinics and hospitals are benefiting from
the implementation of this research. Performing anomaly detection at the rural
node by applying a lightweight machine learning approach in the embedded system
followed by more powerful machine learning algorithms in the cloud offer robust
information without the need for expensive sensors embedded in situ – making the
possibility of a large-scale rural monitoring system feasible.

1 Introduction: SDG 6.1 “safe drinking water for all”

According to the 2015 Sustainable Development Goal (SDG) baseline, 884 million people lack
access to basic drinking water, rising to 2.1 billion without “safely managed” drinking water [2].
The ambition of the SDG target 6.1 of “safely-managed drinking water” by 2030 is unprecedented,
particularly in rural areas where 4 out of 5 people live without access to drinking water. More than
200 million people in sub-Saharan Africa rely on the nearly one million rural handpumps to meet
their daily water needs [3]. However, more than a third of these handpumps are broken at any time
and often remain broken for up to 30 days [4].

Sustainable provision of reliable infrastructure hinges on the high standard of both installation and
maintenance, the latter of which is often under invested in or completely neglected [5]. Downtime
caused by system failure in rural settings can often last longer than in urban settings due to the
practical challenges in the supply of spare parts combined with a lack of local skills. Novel remote
monitoring systems have made it possible to track the operational and financial targets in rural water
supply networks by sending timely data related to usage and payments [6], [7].

Predictive health monitoring is widely used in engineering applications to detect damage to infrastruc-
ture as early as possible to help reduce the downtime of systems, and, ideally, performing predictive
maintenance can avoid downtime completely [8], [9]. A system which can virtually eliminate failure
events for handpumps would generate sustained and significant impacts for the poor and be replicable
across Asia and Africa, where this grand development challenge manifests in achieving “safe water
for all”.
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2 System Requirements for AI-based Remote Health Monitoring

Transmitting raw observations from the sensing nodes in a large-scale sensor network can be costly
and impractical as it requires large bandwidth, power, or both and in the case of rural monitoring can
even be impossible. To overcome this limitation in the monitoring of rural infrastructure, we propose
a “dynamic” approach whereby lightweight machine learning techniques, in the form of a logistic
regressor (LR) novelty filter, be applied at the handpumps to perform initial processing of the raw
observation prior to transmission [10]. The on-pump novelty threshold will define the proportion of
original data to be transmitted based on the on-board assessment of the condition of the handpump.

The dynamic health-monitoring system should aim to: (i) use low-cost, embedded sensors to acquire
accelerometry data from the routine daily use of handpumps, (ii) perform on-pump pre-processing of
the acquired data, (iii) analyse the resulting data to produce informative assessments of the equipment
health condition, (iv) communicate with a cloud server via the domestic telecommunications network,
and (v) perform more advanced machine learning techniques on the cloud-based system to increase
the fidelity of the classified health condition of the equipment [11]. The processing sequence for the
proposed distributed inference system is shown in Figure 1 with three main sections:

A. Sensor node contains the sensor (accelerometer in the case of handpumps), battery, and data
transmitter. A network could contain hundreds of nodes in a small geographical region.
B. On-board novelty filter performs real-time feature extraction of the data acquired during pumping
and analyses the data using a LR novelty filter to produce data summaries that flag potential failure.
C. Cloud server performs more complex processing of the data summaries using advanced machine
learning methods to increase prediction fidelity.

2.1 Lightweight On-pump Novelty Filter

Figure 1: Rural infrastructure health monitoring system:
(A) Sensor nodes with embedded system, (B) On-board
novelty filter producing data summaries, and (C) Gate-
way node and cloud-based computing and analytics.

Data is pre-processed on-board the system
embedded in the handpump and consist of:
peak and trough detection, high-pass filter-
ing, windowing in the time-series domain
[12], and transforming to the frequency do-
main [13]. Finally, it performs feature se-
lection by sampling across frequency bins,
discarding low frequency components that
represent the pumping motion of the user.
As a first layer of in situ health monitoring,
the on-board classifier should be highly sen-
sitive but not specific. Given the limited
processing power (8-bit microprocessor) of
the embedded system, logistic regression
is used to calculate a novelty score by pre-
dicting the probability of membership of
one class (e.g., Normal/Abnormal).

2.2 Heavyweight
Cloud-based Classifier

The next stage of health monitoring in-
volved performing more advanced machine
learning processing on the sub sets of data
flagged by the on-board novelty filter. The
on-pump novelty filter is used to ensure
that under normal operating conditions the
vast majority of data is not transmitted and
only as the on-pump model suspects the
condition is degrading will data be transmitted to the cloud, which means that in most cases the
cloud server will only be receiving higher-fidelity data related to abnormal conditions. Support
Vector Machine (SVM) [14] and Random Forest (RF) [15] classifiers are applied to the data packages
received by the centralised cloud server.
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3 Results with Real World Data

3.1 Data Collection and Data Sets

We consider two data sets from pumps in our study site in Kwale, Kenya. Recordings contain
high-frequency (96 Hz) three axes accelerometery readings from a logger mounted inside the handle
of handpumps, as shown in Fig. 2a. A 5 s interval of data from a handpump in a normal and abnormal
condition is shown in Fig. 2b and 2c, respectively.
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Figure 2: (a) Embedded system mounting and a 5 s
interval of accelerometer data of the handpump in a
(b) normal and (c) abnormal condition in the X, Y, and
Z dimensions (upper to lower plots, respectively).

Typically, deep handpumps are the primary source
of drinking water for nearby households, making
timely repair even more crucial. Thus our main
focus was deep wells, operating at depths greater
than 25 m. Fig. 3 shows the difference in the
spectra of deep and shallow handpumps.

The first data set, Dd,1, represents a deep-
operating inter-handpump system consisting of
eight different handpumps operating at depths be-
tween 30 m to 55 m below ground level. The
second data set, Dd,2, represents a deep-operating
intra-handpump system of one handpump operat-
ing at 54 m.

The data was labeled during in-person, contem-
poraneous observations and contained examples
from eight different common handpump failures.
All the data sets were randomly divided into a
training-and-validation set (80%) and a test set (20%).

3.2 Evaluating Performance
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Figure 3: Median amplitude of the spectral data for
(a) deep and (b) shallow operating handpumps.

The ability of the on-pump novelty filter and
subsequent cloud-based classifier to verify re-
liability was assessed using the receiver oper-
ating characteristic (ROC) to compare the ac-
tual and predicted outputs for each class. The
true positive rate (TPR), or sensitivity, is de-
fined to be the probability of detection such that,
TPR =

∑
TruePositive∑

ConditionPositive and the false posi-
tive rate (FPR), or fall-out, is defined to be the
probability of a false alarm such that, FPR =∑

FalsePositive∑
ConditionNegative . Optimising the area under

the ROC (AUC) will maximise handpump failure
detection while minimising false alarms, which
can be costly in real-life.

3.3 Performance of On-pump Novelty Filter

Once a robust model was trained, the algorithm is deployed in the embedded handpump systems,
such that new vibration data resulting from new pumping generates an on-pump novelty score in
real-time. The novelty score is a scalar number that increases with probability of the pump being
“abnormal” with respect to the machine learning model.

Figure 4 compares the receiver operator curve (ROC) for a deep-operating (a) inter-handpump
classifier, and (b) intra-handpump classifier with a broken rod (common failure). The intra-handpump
classifier achieves an AUROC of 86.21% while the inter-handpump classifier correctly predict two
thirds of failure events (65.7% AUROC). In both cases, the lab simulated results were a slight
improvement of the real time performance, 89.01% and 69.80% respectively.
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3.4 Performance of Cloud-based Classifier during Active Sampling
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Figure 4: ROC of on-pump novelty filter classifier
performance for a deep operating: (a) inter-handpump
classifier trained using Dd,1, and (b) intra-handpump
classifier trained using Dd,2.

The next stage of condition monitoring involved
performing more computationally advanced ma-
chine learning methods on the data flagged by the
on-pump novelty filter. Figure 5 compares the
AUROC for the cloud-based classifiers using the
novelty scores identified by the on-pump novelty
filter. In both cases, the variance of the predictive
accuracy of the LR and SVM classifier is reduced
as the test set size increased. Conversely, however,
in all cases the RF classifier achieves the highest
AUROC with a relatively small proportion data
and does not benefit from additional data both
in improving prediction accuracy or decreasing
prediction variance.

Overall, additional machine learning methods ap-
plied to the data summaries from the on-pump
novelty filter offer a 10 per cent improvement from
the raw on-pump generated novelty scores. The two cases show that there is a trade-off between
accuracy and specificity. Whilst the RF classifier may offer a higher overall prediction accuracy, both
LR and SVM can dramatically reduce the variability in predictions as the proportion of data supplied
is increased.

4 Discussion and Conclusion
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Figure 5: AUROC comparison the cloud-based clas-
sifier using novelty filtered data subsets for: (a) a deep
inter-handpump classifier trained using Dd,1, and (b)
a deep intra-handpump classifier trained using Dd,2.

As proof of concept, we used a LR classifier on
the embedded system to produce a novelty score
related to the condition of the pump. These scores
are then sent to a cloud server where we showed
that SVM and RF classifiers can be used to further
increase the fidelity of the health monitoring sys-
tem. Ongoing work has already started to replace
these cloud-based classifiers with deep learning
techniques.

This work demonstrates that a distributed infer-
ence health monitoring system for rural infras-
tructure offers a number of advantages over exist-
ing remote condition monitoring systems that are
both energy and bandwidth heavy. Incorporating
more advanced machine learning methods on a
cloud-based platform have been shown to increase
the system’s overall positive predictive value by
more than 10 per cent when “intelligent” subsets
of flagged data from the rural node is transmitted.

Importantly, this AI-based system uses a “dy-
namic” approach that distributes work between
inexpensive systems embedded within the hand-
pumps and a computationally-powerful cloud
server that communicates with the handpumps.
Proof-of-concept work in Kenya correctly predicts
more than two thirds of failure events in hand-
pumps. Such novel data are able to inform opera-
tional innovations that has reduced “downtime” from a month or more, to a guaranteed service of
fewer than three days of outage [16]. Following the success of this pilot in Kenya, future work aims
to apply transfer learning to translate this approach to different handpump types in Bangladesh.
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