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Abstract

The use of satellite imagery has become increasingly popular for disaster monitor-
ing and response. After a disaster, it is important to prioritize rescue operations,
disaster response and coordinate relief efforts. These have to be carried out in a
fast and efficient manner since resources are often limited in disaster affected areas
and it’s extremely important to identify the areas of maximum damage. However,
most of the existing disaster mapping efforts are manual which is time-consuming
and often leads to erroneous results. In order to address these issues, we propose a
framework for change detection using Convolutional Neural Networks (CNN) on
satellite images which can then be thresholded and clustered together into grids to
find areas which have been most severely affected by a disaster. We also present a
novel metric called Disaster Impact Index (DII) and use it to quantify the impact
of two natural disasters - the Hurricane Harvey flood and the Santa Rosa fire. Our
framework achieves a top F1 score of 81.2% on the gridded flood dataset and 83.5%
on the gridded fire dataset.

1 Introduction

In the field of computer vision, semantic segmentation in satellite images [10, 9] has been extensively
employed to understand man-made features like roads, buildings, land use and land cover types.
However, most of these analyses are still limited to static snapshots of data involving images acquired
at a single time instance. In order to determine the area impacted by a disaster, we can extend these
approaches to time-series data to detect areas of change.

A simple solution to detect change in time-series data is to directly compare raw RGB values of
satellite images. However, due to different season, lighting and noise, the pixel values across time-
series data can be quite different even in areas with no disaster impact. Therefore, many research
efforts have been explored to improve disaster mapping from satellite images [18, 19]. In [18],
the authors highlight the use of MODIS to develop models to detect disasters. Similarly, in [19],
the authors highlight various satellite data sources and efforts for disaster response. More recent
approaches have studied the use of CNNs for disaster detection from satellite images [8, 12, 11, 14].
In [8], [12], [7] and [11], the authors use CNNs to detect damaged buildings by using damaged and
non-damaged buildings as two classes. However, these approaches rely on building relatively large
training datasets for damaged areas which is expensive and not-scalable.

In this work, we propose to locate areas of maximal disaster damage by using man-made features as
reference, and detecting change in these features can enable us to determine areas where to focus
the relief efforts. We train models based on Fully-Convolutional Neural Networks to detect roads
and buildings from satellite imagery, and generate prediction masks in regions with disaster. By
computing relative change between multiple snapshots of data captured before and after a disaster,
we can identify areas of maximal damage and prioritize disaster response efforts. As our proposed
approach compares the change only in high-level man-made features, it’s invariant to season, lighting
and noise difference in time-series data. In addition, compared to recent approaches [8, 12, 7, 11]
that require training CNNs specifically to detect damaged features, our approach only uses models
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trained on general road and building datasets, which are relatively inexpensive and hence scalable to
other similar natural disasters. Evaluated on a human annotated dataset and a state-provided dataset
of actual disaster impacted areas, we show a strong positive correlation between predicted disaster
areas and actual disaster impacted areas.

2 Proposed Approach

2.1 Overview

We propose to identify disaster-impacted areas by comparing the change in man-made features
extracted from satellite imagery. Using a pre-trained semantic segmentation model (refer to sec. 2.2
for details) we extract man-made features (e.g. roads, buildings) on the before and after imagery of
the disaster affected area. Then, we compute the difference of the two segmentation masks to identify
change. Since the segmentation mask is noisy, we also apply dilation at a radius of 5 pixels on
pre-disaster mask. Subsequently, the change mask is further de-noised by removing small connected
components less than 1000 pixels. Finally, the pixel-wise change mask will be used to compute the
Disaster Impact Index (DII - refer to sec. 2.3) on grids each of size n×n (representing different areas).
Figure 1 shows a flow diagram of our proposed disaster analysis approach.

Figure 1: Flow diagram of our proposed approach for disaster impact analysis. We run pre-trained
CNN on satellite imagery before and after disaster, compare the change in extracted man-made
feature, then compute Disaster Impact Index (DII) to understand impact of each area

2.2 Model Architecture

For semantic segmentation model, we use a Residual Inception Skip network following [10]. This
model is a convolutional encoder-decoder architecture with the inception modules instead of standard
convolution blocks. The inception models were originally proposed in [15] but with asymmetric
convolutions. For example, a 3× 3 convolution is replaced with a 3× 1 convolution, then batch norm
followed by 1× 3 convolution. This is useful since it reduces the number of parameters and gives
similar performance. All weights are initialized with the He norm [13] and all convolutional layers
are followed by batch normalization layers which in turn are followed by activation layers. Following
the architecture proposed in [10], we also used leaky ReLUs with a slope of −0.1x as our activation
function. We used a continuous version of the Dice score as our loss function.

2.3 Disaster Impact Index (DII)

As our CNN model detects man-made features before disaster but fails to detect some of them after
disaster, we can infer areas of maximal impact using change detection. We propose a metric to
quantify this impact called Disaster Impact Index (DII). Considering the semantic segmentation result
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generated by the CNN before and after the disaster, and dividing the area into small grids each of size
n×n, we can calculate the change in detected features and define DII in each grid as:

Disaster Impact Index(DII) = ∆Pred =
|ηPredbefore=1&Predafter=0|grid
1

Ngrid

∑Ngrid

i=1 |ηPredbefore=1|gridi

(1)

where |ηPredbefore=1&Predafter=0|grid denotes the number of pixels in the grid which have the
feature detected in the pre-disaster CNN mask but not in the post-disaster mask (because the other
way around is usually not caused by disaster); 1

Ngrid

∑Ngrid

i=1 |ηPredbefore=1|gridi
denotes the number

of feature pixels predicted in each grid pre-disaster, averaged over the whole region, where Ngrid is
the total number of grids in the region. Essentially, DII represents the normalized pixelwise change
aggregated over the evaluation grid. This normalization is crucial since the number of feature pixels
varies depending on the region (urban, rural) or feature (road, building). After normalization, DII
becomes a region and feature independent metric that’s comparable across different scenarios.

Aggregating the DII over grids of arbitrary sizes, and thresholding with a threshold of τ , we can infer
regions of maximal impact. In our analysis, we set grid size to be 256× 256, and τ = 0.01. Note the
threshold is the same regardless of region or feature, thanks to the normalization in DII.

3 Experiments

3.1 Training Datasets

We trained our model by combining two publicly available high-resolution satellite imagery semantic
segmentation datasets, namely Spacenet [6] and Deepglobe [9]. Spacenet is a corpus of commercial
satellite imagery and labeled training data which consists of building footprints for various cities
around the world at resolutions ranging from 30-50 cm/pixel. The DeepGlobe dataset is created
from DigitalGlobe Vivid+ satellite imagery [2] containing roads, buildings and landcover labels at
resolution of 50 cm/pixel. To show that our method generalizes across feature types and datasets,
we also used another dataset of lower resolution imagery (around 3 m/pixel) from Planet Labs [4] to
train the roads model.

3.2 Validation Datasets

In order to validate our results we identified two natural disasters: Hurricane Harvey flood [3] and
Santa Rosa fire [5]. The Hurricane Harvey flood dataset is approximately 143km2 near Sugar Land,
Texas; and Santa Rosa fire dataset is approximately 120km2 near Santa Rosa, California. These
areas were chosen to represent two classes of natural disasters, namely flood and fire whose impact is
evaluated using two classes of man-made structures, namely roads and buildings respectively. They
also represent two different resolution datasets, that is DigitalGlobe and Planet Labs.

We annotated the data in two different ways. Firstly, we followed the same annotation procedure as
described in the DeepGlobe paper [9] to identify all the roads and buildings in a pixel-wise binary
mask. Secondly, instead of completely relying on pixel based metrics which may not fully capture
the goal of impact area analysis, we split the image in small grids and asked the annotators to identify
affected area from satellite imagery . For Santa Rosa, we found ground truth data from the FRAP
website from the California Department of Forestry and Fire Protection [1], so we used that instead
of the human annotated version.

3.3 Evaluation Results

For both the Hurricane Harvey flood data as well as the Santa Rosa fire data, we evaluate the proposed
approach in three settings as shown in fig. 1: i) predict pixelwise change before and after disaster,
and evaluate against pixelwise ground-truth labels, ii) aggregate pixelwise changes over grids of size
256× 256 to compute DII, and threshold by τ = 0.01, then evaluate against gridded ground-truth
computed from pixelwise labels, and 3) compute DII and threshold the same way, but evaluate against
labels for impact area.
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Figure 2: (a) Use DII to infer severe flooding damage areas (highlighted) during Hurricane Harvey,
based on changes in detected roads (Blue: true positive, Green: false positive, Red: false negative);
(b) Use DII to infer severe fire damage areas at Santa Rosa, based on changes in detected buildings
(Blue), compared with shapefile of fire damage area obtained from FRAP [1] (Red)

Figure 2(a) shows a flood affected area impacted during Hurricane Harvey. We can see several roads
missing after the flood, which can help us quantify impact of the flood. Finding areas of maximal
and minimal change on top of these disaster affected areas, and thresholding and clustering them, we
can infer areas of most severe flooding as highlighted in fig. 2(a). The quantitative results from this
analysis are presented in Table 1. Figure 2(b) shows change in building structures detected before
and after the Santa Rosa fire, and quantitative results are presented in Table 2. Using the human
annotated dataset of actual disaster impacted areas for the Harvey flood and the FRAP dataset for the
Santa Rosa fire, we are able to prove a positive correlation between DII and actual disaster impacted
areas. This can be seen in Table 1 and 2 where the F1 scores indicate the high correlation between
the CNN-based change detection masks and the ground truth data both for the pixelwise approach
and the DII-based approach.

Table 1: Results for the evaluation area for the Hurricane Harvey flood

Precision Recall F1 [17] IoU [16]
Pixelwise road change prediction vs. pixelwise labelled roads 63.1% 67.9% 65.4% 48.6%
DII-based road change prediction vs. gridded labelled roads 75.9% 87.2% 81.2% 68.3%
DII-based road change prediction vs. labelled impact area 88.8% 50.5% 64.4% 47.5%

Table 2: Results for the evaluation area for the Santa Rosa fire

Precision Recall F1 IoU
Pixelwise building change prediction vs. pixelwise labelled buildings 72.4% 81.7% 76.8% 62.3%
DII-based building change prediction vs. gridded labelled buildings 81.8% 85.4% 83.5% 71.7%
DII-based building change prediction vs. FRAP impact area 81.1% 73.5% 77.1% 62.7%

4 Conclusion and Future Work

In this paper, we show that using multiple snapshots of satellite images captured at different time
periods, and running CNN-based semantic segmentation models, we can detect change in the structure
of various man-made features and use this as a proxy to detect areas of maximal impact due to natural
disasters. The change masks derived from CNN outputs are clustered and thresholded to derive the
Disaster Impact Index (DII) which can be used to find regions of priority to coordinate relief efforts.
Our experiments show a high correlation between predicted impact areas and ground truth labels.

As part of this work, we focus only on roads and buildings, however this can be extended to quantify
disaster impact on other general natural and man-made features.
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