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Abstract

Water managers in the western United States (U.S.) rely on longterm forecasts
of temperature and precipitation to prepare for droughts and other wet weather
extremes. To improve the accuracy of these longterm forecasts, the Bureau of
Reclamation and the National Oceanic and Atmospheric Administration (NOAA)
launched the Subseasonal Climate Forecast Rodeo, a year-long real-time fore-
casting challenge, in which participants aimed to skillfully predict temperature
and precipitation in the western U.S. two to four weeks and four to six weeks in
advance. We present and evaluate our machine learning approach to the Rodeo
and release our SubseasonalRodeo dataset, collected to train and evaluate our
forecasting system. Our system is an ensemble of two regression models, and
exceeds that of the top Rodeo competitor as well as the government baselines for
each target variable and forecast horizon. The full paper is Hwang et al. (2018b).

1 Main Results

Water and fire managers in the western United States (U.S.) rely on subseasonal forecasts—forecasts
of temperature and precipitation two to six weeks in advance—to allocate water resources, manage
wildfires, and prepare for droughts and other weather extremes (White et al., 2017). While purely
physics-based numerical weather prediction dominates the landscape of short-term weather fore-
casting, such deterministic methods have a limited skillful (i.e., accurate) forecast horizon due to
the chaotic nature of weather (Lorenz, 1963). Prior to the widespread availability of operational
numerical weather prediction, weather forecasters made predictions using their knowledge of past
weather patterns and climate (sometimes called the method of analogs) (Nebeker, 1995). The current
availability of ample meteorological records and high-performance computing offers the opportunity
to blend physics-based and statistical machine learning (ML) approaches to extend the skillful forecast
horizon.

This data and computing opportunity, coupled with the critical operational need, motivated the
U.S. Bureau of Reclamation and the National Oceanic and Atmospheric Administration (NOAA)
to conduct the Subseasonal Climate Forecast Rodeo (Nowak et al., 2017), a year-long real-time
forecasting challenge, in which participants aimed to skillfully predict temperature and precipitation
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in the western U.S. two to four weeks and four to six weeks in advance. To meet this challenge, we
developed an ML-based forecasting system and a SubseasonalRodeo dataset (Hwang et al., 2018a)
suitable for training and benchmarking subseasonal forecasts.

Our subseasonal ML system is an ensemble of two regression models: a local linear regression
model with multitask model selection (MultiLLR) and a weighted local autoregression enhanced
with multitask k-nearest neighbor features (AutoKNN). The MultiLLR model introduces candidate
regressors from each data source in the SubseasonalRodeo dataset and then prunes irrelevant
predictors using a multitask backward stepwise criterion designed for the forecasting skill objective.
The AutoKNN model extracts features only from the target variable (temperature or precipitation),
combining lagged measurements with a skill-specific form of nearest-neighbor modeling. For each
of the two Rodeo target variables (temperature and precipitation) and forecast horizons (weeks 3-4
and weeks 5-6), our work makes the following principal contributions:

1. We release a new SubseasonalRodeo dataset suitable for training and benchmarking
subseasonal forecasts.

2. We introduce two subseasonal regression approaches tailored to the forecast skill objective,
one of which uses only features of the target variable.

3. We introduce a simple ensembling procedure that provably improves average skill whenever
average skill is positive.

4. We show that each regression method alone outperforms the Rodeo benchmarks, including
a debiased version of the operational U.S. Climate Forecasting System (CFSv2), and that
our ensemble outperforms the top Rodeo competitor.

5. We show that, over 2011-2018, an ensemble of our models and debiased CFSv2 improves
debiased CFSv2 skill by 37-53% for temperature and 128-154% for precipitation.

For details, see the full paper (Hwang et al., 2018b).

2 Forecasting Challenge Details

The Subseasonal Climate Forecast Rodeo was a year-long, real-time forecasting competition in which,
every two weeks, contestants submitted forecasts for average temperature (◦C) and total precipitation
(mm) at two forecast horizons, 15-28 days ahead (weeks 3-4) and 29-42 days ahead (weeks 5-6). The
geographic region of interest was the western contiguous United States, delimited by latitudes 25N to
50N and longitudes 125W to 93W, at a 1◦ by 1◦ resolution, for a total of G = 514 grid points. The
initial forecasts were issued on April 18, 2017 and the final on April 3, 2018.

Forecasts were judged on the spatial cosine similarity between predictions and observations adjusted
by a long-term average. More precisely, let t denote a date represented by the number of days since
January 1, 1901, and let year(t), doy(t), and monthday(t) respectively denote the year, the day of
the year, and the month-day combination (e.g., January 1) associated with that date. We associate
with the two-week period beginning on t an observed average temperature or total precipitation
yt ∈ RG and an observed anomaly

at = yt − cmonthday(t), (1)

where

cd , 1
30

∑
t : monthday(t)=d,
1981≤year(t)≤2010

yt (2)

is the climatology or long-term average over 1981-2010 for the month-day combination d. Contestant
forecasts ŷt were judged on the cosine similarity—termed skill in meteorology—between their
forecast anomalies ât = ŷt − cmonthday(t) and the observed anomalies:

skill(ât,at) , cos(ât,at) =
〈ât,at〉
‖ât‖2‖at‖2 . (3)

To qualify for a prize, contestants had to achieve higher mean skill over all forecasts than two gov-
ernment benchmarks, a debiased version of the physics-based operational U.S. Climate Forecasting
System (CFSv2) and a damped persistence forecast. The official contest CFSv2 forecast for t, an
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average of 32 operational forecasts based on 4 model initializations and 8 lead times, was debiased
by adding the mean observed temperature or precipitation for monthday(t) over 1999-2010 and
subtracting the mean CFSv2 reforecast, an average of 8 lead times for a single model initialization,
over the same period. An exact description of the damped persistence model was not provided.

Table 1: Average contest-period skill of the proposed models MultiLLR and AutoKNN, the proposed
ensemble of MultiLLR and AutoKNN (ensemble), the official contest debiased-CFSv2 baseline (cfsv2),
the official contest damped-persistence baseline (damped), and the top-performing competitor in the
Forecast Rodeo contest (top competitor).

task multillr autoknn ensemble cfsv2 damped top competitor

temperature, weeks 3-4 0.2856 0.2807 0.3414 0.1589 0.1952 0.2855
temperature, weeks 5-6 0.2371 0.2817 0.3077 0.2192 -0.0762 0.2357
precipitation, weeks 3-4 0.1675 0.2156 0.2388 0.0713 -0.1463 0.2144
precipitation, weeks 5-6 0.2219 0.1870 0.2412 0.0227 -0.1613 0.2162

temperature, weeks 3-4 temperature, weeks 5-6 precipitation, weeks 3-4 precipitation, weeks 5-6
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Figure 1: Distribution of contest-period skills of the proposed models MultiLLR and AutoKNN,
the proposed ensemble of MultiLLR and AutoKNN (ensemble), the official contest debiased-CFSv2
baseline, and the official contest damped-persistence baseline (damped). Average contest-period skill
is indicated by a vertical line.
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Figure 2: Feature inclusion frequencies of all candidate variables for local linear regression with
multitask model selection (MultiLLR) across all target dates in the historical forecast evaluation
period. For a full description of the variables see Hwang et al. (2018b).
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Table 2: Average skills for historical forecasts in each year following the climatology period. We
compare the proposed ensemble of the MultiLLR and AutoKNN models (ensemble), the reconstructed
debiased CFSv2 baseline (rec-deb-cfs), and the proposed ensemble of MultiLLR, AutoKNN, and
debiased CFSv2 (ens-cfs).

temperature, weeks 3-4 temperature, weeks 5-6

year ensemble rec-deb-cfs ens-cfs ensemble rec-deb-cfs ens-cfs

2011 0.3433 0.4598 0.4563 0.3646 0.3879 0.4405
2012 0.2173 0.1397 0.2181 0.3529 0.1030 0.3316
2013 0.1688 0.2861 0.2711 0.1895 0.1211 0.1858
2014 0.2803 0.3018 0.3591 0.2596 0.1936 0.3311
2015 0.4339 0.2857 0.4383 0.2970 0.4234 0.4311
2016 0.3663 0.2490 0.3887 0.3023 0.0983 0.2799
2017 0.3414 0.0676 0.3239 0.3077 0.1708 0.2993

all 0.3073 0.2557 0.3508 0.2962 0.2142 0.3279

precipitation, weeks 3-4 precipitation, weeks 5-6

year ensemble rec-deb-cfs ens-cfs ensemble rec-deb-cfs ens-cfs

2011 0.2081 0.1646 0.2435 0.2195 0.1835 0.2704
2012 0.3999 0.0828 0.3854 0.4026 0.1941 0.4083
2013 0.2353 0.0648 0.1967 0.1969 0.0782 0.1915
2014 0.1378 0.1272 0.1716 0.0372 0.0155 0.0537
2015 0.0396 0.0837 0.1035 0.0822 0.0292 0.0878
2016 0.0660 0.0190 0.0467 0.0125 -0.0160 0.0180
2017 0.2388 0.0596 0.2270 0.2412 -0.0038 0.2026

all 0.1893 0.0860 0.1964 0.1703 0.0691 0.1755
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Figure 3: (a) Precipitation, weeks 3-4: Distribution of the month of the most similar neighbor learned
by AutoKNN as a function of the month of the target date. (b) Temperature, weeks 3-4: Year (top)
and month (bottom) of the 20 most similar neighbors learned by AutoKNN (vertical axis ranges from
k = 1 to 20) as a function of the target date (horizontal axis).
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