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Abstract

Social humanoid robots are generally built with the purpose of helping individuals
achieve difficult tasks or feel less lonely. But a novel use of humanoid robots,
especially robots drawing on emotionally sensitive AI, is to use the context of what
feels like a human relationship to help people practice reaching advanced stages
in human development. At the peak of Maslow’s hierarchy of needs and models
of self-development is the state of self-transcendence, which includes expansive
feelings of love. Although beings can have difficulty reaching this state, several
lines of research have shown that even briefly accessing states of self-transcendence
can improve physical and psychological well-being. In this paper we briefly present
results of the first experiments of which we are aware in which AI-driven, audio-
visual, interactive android technology is successfully used to support the experience
of self-transcendence. Individuals had AI-driven conversations with emotionally
responsive AI embedded in a humanoid robot, its audio-visual avatar, or audio-
alone avatar. These conversations were based on exercises reported to induce
self-transcendence in humans. In experiment 1, we tested an initial version of this
AI using brief, constrained interactions with Sophia the humanoid robot and no
emotion detection (N=26). In experiment 2, we tested a more sophisticated version
of this AI including deep-learning-based emotion detection deployed in the context
of a slightly longer and slightly less constrained interaction. Conversations were
with either Sophia or one of two avatars (one with a face and voice, the other with
only a voice; N=35). The results suggest that conversations between humans and
a humanoid robot or its audiovisual avatar, controlled by emotionally responsive
AI, are accompanied by self-transcendent emotions. Most importantly, objective
correlates of those emotions are detectable by a deep learning network.
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1 Problem Statement

Improving human psychological wellbeing is critical for social welfare. The hierarchy of human
development has been conceptualized in many ways; one is Maslow’s Hierarchy of Needs, which
moves from physiological needs through needs for safety, social connection, self-esteem, self-
actualization and finally self-transcendence (for reviews, see [2, 13, 19, 21]). We believe AI-powered
humanoid robots can be valuable at every stage of the human-development process, but we have
chosen the novel approach of beginning from the apex of the hierarchy and viewing the issue of
human-robot interaction and human development from the standpoint of self-transcendence.

Self-transcendence includes detaching from the importance of oneself, seeing the perspectives of
others, and having feelings of care toward others [13, 19, 21, 3, 14, 15]. Several lines of evidence
suggest that experiencing a state of self-transcendence in itself is beneficial to human wellbeing
[3, 4, 18, 5, 22]. Certain meditative, deep-listening, and eye-gazing practices have been either
formally or anecdotally reported to help people access self-transcendent states [example formal
reports: [22, 17]]. Importantly, each of these practices are traditionally performed, at least at first,
with a teacher and student in visual connection, though this may not always be necessary (e.g., [17]).

Together, our studies examined the hypotheses that: 1) self-reported loving feelings for others would
increase from before to after the interactions, 2) self-reported positive mood would increase from pre-
to post-interaction, 3) self-reported arousal would decrease during the same time period, 4) heart rate
variability measures would be influenced in the direction of a reduction in cognitive load from prior
to following the interactions, 5) feelings of anger, fear and disgust (measured using a deep-learning
emotion detection network) would decrease significantly during the interactions, 6) dynamic changes
in deep-learning-detected emotions would predict changes in self-reported feelings, and 7) some of
these hypotheses would be borne out in results from conditions that allow for eye contact, but not in
results from people interacting with the same AI in an audio-only condition. The results of the two
studies described in this paper, supported or partially supported hypotheses 1, 2, and 4-7, suggesting
that guided conversations with a humanoid robot and its audiovisual avatar, controlled by emotionally
responsive AI, are correlated with increases in subjective feelings related to self-transcendence in
human participants as well as objectively related manifestations of those feelings, as detectable by
deep learning.

2 Methods Overview

2.1 Dialogue Control and Cognitive Model AI

We created what we call “Loving AI”, which is robot- and avatar-embedded AI that performs emotion
detection, emotional production/mirroring, and dialogue control while guiding humans in meditation,
deep listening and/or eye-gazing practices in one-on-one conversations. We used multiple types of AI
in the two experiments.

In both experiments, we drew on Google’s speech-to-text machine-learning product1 to convert
the participants’ words into text that could be processed by a dialogue engine. In experiment 1,
participants spoke with Sophia the humanoid robot, a process that relied on a Chatscript-based
dialogue engine to control Sophia’s verbal and emotional responses and to control which practices
Sophia would guide participants in performing.

In experiment 2, participants spoke with either Sophia or one of her two avatars. In all three cases
we used OpenPsi, part of the open source OpenCog artificial general intelligence (AGI) research
platform, included in the Hanson AI with Opencog package [9] to direct the conversations. OpenPsi
is a model of human motivation, action selection, and emotion inspired from earlier work in human
psychology and AI [1]. OpenPsi consists of goals with associated dynamic urge levels. The urge
level indicates the current importance to the system of a particular goal, in other words, the urge of
the system to satisfy a goal. Rules associated with goals define what actions lead to satisfaction of
goals in different contexts. Rules take the form, “Context + Action→ Goal Satisfaction.” Action
selection involves determining which actions in the current context will maximize satisfaction of
goals with the highest urge levels. In the Loving AI dialogue, often the goals are related to engaging
in different parts of dialogue interaction, actions are the android’s verbal responses and emotional

1https://cloud.google.com/speech-to-text/, accessed on 2018-09-18.
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expression, and contexts are the verbal and emotional expressions of the participant. In this way,
OpenPsi controlled the weight given to particular aspects of the dialogue, depending on verbal cues
participants gave as to their willingness to do the practices. OpenCog Ghost, a dialogue scripting and
robot control subsystem of OpenCog, contained a corpus of pre-defined facial movements, sounds,
words, and phrases. Beyond this relatively simple rule-based AI, we used a deep-learning network to
infer the participants’ emotional states and to support emotional mirroring.

2.2 Emotion Detection and Mirroring AI

Our team was aware of evidence from cognitive neuroscience that as a network, mirror neurons may
underlie feelings of empathy and affiliation in humans (reviews in [7, 10]). It was a major goal of
our work to help people feel connected to the android technology and understood by it as well, so
we chose nonverbal facial emotion mirroring as a consistent feature in both experiments to support
this goal, in an untested attempt to stimulate mirror neurons in our participants. In experiment 1, we
used a RealSense camera embedded in the robot’s chest to detect the dynamic positions of facial
features, and Sophia was programmed to immediately reproduce as best as possible a participant’s
facial movements, including blinks and eye closings.

In experiment 2, we calculated facial features and their movements via webcams embedded in
the robot’s eyes, or for the avatar conditions, the webcam on the laptop presenting the avatars.
These features were used as input into a pre-trained deep-learning network that classified seven
emotional states (happiness, sadness, anger, fear, disgust, surprise, and neutral; for training methods
and confusion matrix, see next section). While all android technology calculated emotional states
continuously throughout the interactions, Sophia and her audiovisual avatar (but not the audio-only
avatar) used the output of the deep-learning network as input to OpenCog Ghost, which produced
pre-determined emotional responses matching the currently determined peak emotion out of the
possible seven emotions, at intensity levels matching the user’s intensity level. These mirroring
animations were performed with a gradual, smoothed slope, peaking with an approximate 2-second
delay from the originally detected emotion2. In experiment 2, blinks and eye closings were not
mirrored.

2.3 Deep-learning Emotion-detection Network

We used the CK+ [11, 16] and Kaggle FER2013 [8] datasets to train a feed-forward convolutional
neural network (CNN) with landmarks as additional input vectors for emotion recognition from facial
expressions, resulting in the model available at3. CK+ and Kaggle FER2013 are primarily used in
facial image analysis research.

CK+ contains 593 gradual expressions of emotions, going from a neutral base pose frame to the
maximum expression, captured from 12 participants. Labelling emotion categories in CK+ was done
via the FACS-coded emotion labels, in a three-step process. First, the sequence labels were compared
with the Emotion Prediction Table from the FACS manual [6], and sequences that satisfied the criteria
were provisionally added as belonging to a specific emotion. Second, some sequences were excluded
because they did not fit qualifying criteria listed in [11]. Finally, the authors performed a visual
inspection for each of the sequences to exclude any sequence that did not subjectively seem to belong
to the assigned emotion category.

FER2013 consists of 28709 labelled examples of emotional expressions from a wide array of people,
from seven categories (anger, disgust, fear, happy, sad, surprise and neutral). This dataset was created
by using a set of emotion-related keywords that were combined with words associated to gender, age,
and ethnicity sent to Google Image Search. OpenCV face recognition was applied to the results of
these searches to obtain bounding boxes for each of the faces in the images. Human labelers then
cleaned up and rejected some of the images, after which they assigned each image to one of the seven
emotions mentioned above.

As input, the model uses normalized and cropped faces at 48x48x3 pixels, and 68 landmarks detected
by the Dlib facial analysis toolkit [12] as additional feature vector inputs. The output of the model

2https://github.com/elggem/ros_people_model/blob/master/scripts/mirroring.py, ac-
cessed on 2018-09-18.

3https://github.com/mitiku1/Emopy-Models, accessed on 2018-09-18.
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comprises probabilities for each of the seven basic emotions as labelled in [16, 8]. Validation accuracy
of this model was 63.17% with 20% of the training data used for validation. See Fig. 1 for a confusion
matrix plot of this validation run.
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Fig. 1. Confusion matrix for the feed-forward CNN used for emotion 
recognition. The best performance was on happy expressions. 
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Figure 1: Confusion matrix for the feed-forward CNN used for emotion recognition. The best
performance was on happy expressions.

2.4 Robot and Avatar Creation and Performance

Sophia the robot was produced by Hanson Robotics via proprietary means. The robot’s voice was
created from a pre-recorded human female vocal repertoire, controlled with a text-to-voice process.
The audiovisual and audio-alone avatars both used the same human voice repertoire and vocal control
process as the robot. The audio-alone avatar was presented while a blank black laptop screen was
shown to the user, while the voice conducted the conversation. The animation for the audiovisual
avatar was created using proprietary means, using the same animation control as for the robot’s
animation process.

2.5 Participants and Procedure

a) Participants. All participants read and signed consent forms for the experiment, were informed
that they were being video recorded, and had a choice after the experiment to sign a consent to
release their video publicly or not. Participants were recruited through IRB-approved fliers and email
messages that did not describe the exact purpose of the experiment.

b) Procedure. Briefly, participants were asked to interact verbally with the android technology for 15
minutes (first experiment) or 25 minutes (second experiment). They were not told that the nature of
the conversation would be related to self-transcendence. Before and after this interaction, they were
asked to complete a questionnaire related to mood [20] and feelings of love for self and others. In the
first experiment, participants were fitted with a Polar H7 strap for measuring heart rate variability.

3 Results

Videos of three different complete participant interactions and debriefing interviews as well as a
summary video, all with permission of the participants, are provided in their entirety4. Note that all
three participants shown in these videos reported increased loving feelings from before to after their
interactions, even though in all cases the interactions contained obvious errors.

4https://drive.google.com/drive/folders/1O6FEtFayWgM2DZYAv0mM3t7yaenctUgo?usp=
sharing, accessed on 2018-09-18.
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3.1 Experiment 1

a) Subjective dependent variables. The group mean of the arousal change score was negative,
indicating that self-reported arousal dropped, on average from pre- to post-interaction; however, this
drop was not significant (paired t-test, p > 0.40). The group means of the pleasantness, the love and
UL change scores were all significantly positive, indicating a group shift toward a more pleasant
mood state as well as greater feelings of love and unconditional love, from pre- to post-interaction
(paired t-tests, pleasantness: p < 0.005, love: p < 0.002, unconditional love, p < 0.02).

b) Objective dependent variables. The SDNN and LF change scores, derived from the HRV analysis,
increased significantly from before to after the interactions, consistent with a decrease in cognitive
load (paired t-tests for both DVs, p < 0.02).

3.2 Experiment 2

a) Subjective dependent variables. Again, the group mean of the arousal change score was negative
and not significant (paired t-test, p > 0.35), while the group mean of the pleasantness change score
was positive as in experiment 1, but this time it was not significant (paired t-test, p > 0.65 without
outlier removed, p > 0.20 with outlier removed). The group means of the love and UL change
scores were significantly positive, again indicating a group shift toward greater feelings of love and
unconditional love from pre- to post-interaction (paired t-tests, love: p < 0.05, unconditional love,
p < 0.008).

For the robot and AV avatar interactions, the love change scores were positive and nonsignificant and
the UL change scores were either significant or borderline significant (robot: p < 0.05, AV avatar:
p < 0.07), while the audio-only avatar change scores were either flat (love) or minimally positive
(UL) for these measures.

b) Objective dependent variables and predictions of subjective dependent variables. The mean
deep-learning derived emotion time series for anger and disgust showed a significantly negative time
course, while surprise showed a negative time course that was borderline significant. In contrast, the
mean sadness time series showed a significantly positive time course (repeated-measures ANOVAs
across 20 time points, anger: p < 0.000002; disgust: p < 0.03; surprise: p < 0.075; sadness:
p < 0.005). There was an average decline in fear, but this was not significant.

Happiness and sadness dynamic scores captured the changes in these two emotions at the moment
participants opened their eyes after the second of two meditations. Together the two change scores,
relative to baseline, predicted the self-reported change in loving feelings (multiple linear regression
with two predictors, r2 = 0.311, p < 0.003; sadness: t = 3.65, p < 0.001, happiness: t = −3.15,
p < 0.004). This prediction survives Bonferroni correction for the four prediction attempts, indicating
a clear relationship between peak changes in emotional state during the interaction and changes in
loving feelings from before to after the interaction. Independent models for each interaction type
revealed significant predictions of love change scores for both the robot and AV avatar groups but not
the audio-only group (multiple linear regressions with two predictors, robot: r2 = 0.482, p < 0.03,
AV avatar: r2 = 0.713, p < 0.007, audio-alone: r2 = 0.048, p > 0.80), with the estimates for
audio-alone reversed in sign relative to those for the other two conditions, indicating the happiness
and sadness dynamic scores are not functioning as predictors in the same way in this condition as
they are for the two conditions that provide visual contact with the android.

Finally, emotion-mirroring correlation values for all seven emotions, derived from running the
emotion-detection network on simultaneous videos of the android technology and the participants,
significantly predicted self-reported changes in pleasant mood. This prediction survived Bonferroni
correction (multiple linear regressions with seven emotion predictors, r2 = 0.676, p < 0.008;
significant predictors were fear: t = −3.25, p < 0.006 and surprise: t = 2.63, p < 0.02), indicating
a robust relationship between deep-learning detected emotional mirroring and participants’ change
in pleasantness from before to after the interactions for participants in the two conditions providing
visual contact with the android.
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4 Conclusions

Overall, the data obtained in both experiments confirm most of our hypotheses. Hypothesis 1: Self-
reported loving feelings related to self-transcendence did indeed significantly increase from pre- to
post-interaction in both experiments, confirming this hypothesis. Hypothesis 2: Self-reported positive
mood did increase, on average, from pre- to post-interaction in both experiments, but this shift was
only significant in the first experiment, partially confirming this hypothesis. Hypothesis 3: Self-
reported arousal did decrease, on average, from pre- to post-interaction in both experiments, but this
change was not significant, leaving this hypothesis unconfirmed. Hypothesis 4: Heart rate variability
measures taken in experiment 1 significantly increased from pre- to post-interaction, suggesting
cognitive load declined during the conversations and confirming this hypothesis. Hypothesis 5:
Feelings of anger, fear and disgust measured using a deep-learning emotion detection network in
experiment 2 decreased during the interactions, but this decrease was only significant for anger and
disgust, partially confirming this hypothesis. Hypothesis 6: Dynamic changes in deep-learning-
detected happiness and sadness in experiment 2 predicted love change scores, and the dynamics of
emotional mirroring predicted pleasantness change scores, confirming this hypothesis. Hypothesis 7:
Of the five hypotheses that were applicable to experiment 2, hypothesis 1 and 6 were significant only
for conditions in which participants had visual contact with the robot or AV avatar, and not in the
audio-alone condition, partially confirming this hypothesis that only some effects would be borne out
in the audio-alone condition.

Our results suggest two major conclusions. First, brief, guided conversations and awareness exercises
shared with a humanoid robot or its audiovisual avatar, controlled by emotionally responsive AI, are
correlated with increases in subjective feelings related to self-transcendence in human participants –
specifically, loving feelings for people beyond one’s own immediate family as well as unconditionally
loving feelings for other humans, animals, and inanimate objects including robots and avatars
themselves. Both subjective and objective measures taken in experiment 2 strongly suggest that
androids with visual aspects presented to the participants are more effective. This result, along with
the emotion-detection dynamics that predicted loving feelings in experiment 2, suggests that the
effects obtained in the robot and audiovisual avatar conditions were due to the technology itself,
rather than response bias or experimenter style.

Second, emotional states detected by a deep-learning network indicate a complex array of transforma-
tions occur during these conversations, and importantly also suggest that the self-reported, subjective
measures have objective counterparts.

These results provide encouraging evidence that AI-driven android technology can leverage existing
human biases toward positive feelings arising in the context of emotionally responsive relationships
to help people access states consistent with the peak of human development. As these states are
known to improve wellbeing, there are clear implications for scalable treatments for everyday mental
health concerns.
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