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Abstract

Exposure of critical power grid information could threaten power market efficiency
and cybersecurity. It is thus in the best interests of power grid operators to assess
what information may be exposed. We formulate an algorithm called inverse
optimal power flow to assess the extent to which private power grid data is exposed
by publicly-available data. Our algorithm exploits the fact that private and public
information are related via the AC optimal power flow optimization problem, and
differentiates through this problem to explore the private parameter space. We find
that we are able to learn private information such as electricity generation costs
and (to some extent) grid structural parameters on a 14-node test case. We seek to
share this information with grid operators to aid in their vulnerability assessments.

1 Introduction

In the electricity sector, there is a great need to protect critical market and structural information that
could compromise efficient electricity market operation or power grid cybersecurity. For instance, an
electricity generator that gains information about other generators’ costs could bid strategically to
increase profits, potentially increasing electricity prices for consumers [1, 2]. As another example, an
adversary who gains information about grid structure could intentionally cause a power outage [3]. It
is thus in grid operators’ best interests to assess whether critical information is exposed, and then act
to prevent this exposure from affecting efficient and safe power system operation.

At the same time, grid operators such as PJM and governmental entities such as the Environmental
Protection Agency regularly publish quantities such as five-minute electricity prices [4] and hourly
power outputs of electricity generators [5] for the purposes of market transparency and emissions
monitoring. While this published information is not sensitive in and of itself, it is possible that
individuals could use it to “reverse-engineer” critical market information. We investigate the question
of whether and to what extent critical power grid information is exposed by published information,
given our knowledge that these private and public quantities are related via an optimization problem
called AC optimal power flow (ACOPF). To do this, we formulate an algorithm called inverse optimal
power flow (inverse OPF) that uses a neural network to learn private quantities from public quantities.

We first describe related work, including the formulation of ACOPF. We then describe our inverse
OPF approach, which involves computing gradients through the ACOPF optimization problem. We
show that our method can learn cost parameters on a 14-node test case and shows promise in learning
some grid structural parameters. We seek to share our results with grid operators so they may better
protect against system vulnerabilities effected by the exposure of critical information.
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2 Related work

Power system vulnerability analysis. Prior work has assessed the power system’s vulnerability to
electricity market gaming and cybersecurity attacks. For instance, [1, 6] retroactively analyze the
efficiency of power market operation in specific United States power markets, and work in the area of
mechanism design [7] attempts to proactively design markets that will operate efficiently. Other work
has attempted to assess cybersecurity threats to grid stability and reliability [3, 8, 9], especially with
the increasing use of smart devices on the grid. Our work is complementary to this body of research,
as our analysis of critical data exposure can serve as an input to such vulnerability analyses.

Inverse problems. Inverse problems seek to predict model inputs or decision parameters from
model outputs, with examples in machine learning including inverse reinforcement learning [10],
inverse imaging problems [11], and deep network applications [12]. Within power systems, prior
work has used techniques from game theory, graph theory, and bi-level optimization to identify
power grid structure [13] and energy demands [14]. We seek to bridge techniques from these two
communities by proposing a method to solve inverse power flow problems within a neural network.

Differentiating through optimization problems. Recent work has explored differentiating
through optimization problems such as quadratic programming [15, 16] and submodular optimization
[17, 18] in the context of deep neural networks. We specifically employ some of the innovations in
differentiable quadratic programming to formulate and solve our inverse optimal power flow problem.

3 Background: AC optimal power flow

We now present the AC optimal power flow (ACOPF) optimization problem [19], which plays a crucial
role in our formulation of inverse optimal power flow. ACOPF is solved by power system operators
to pick power system quantities that minimize the overall cost of delivering power. Specifically, for a
power grid with n nodes, operators must determine quantities z ≡

[
angle(v)T |v|T pTg qTg

]T
,

where v ∈ Cn are the voltages at each node and pg, qg ∈ Rn are the real and imaginary parts of the
power injections (e.g. from electricity generators) at all system nodes. These quantities solve

minimize
z≡[angle(v)T |v|T pTg qTg ]

T
fc(pg)

subject to Az = b (linear equality constraints)
Gz ≤ h (linear inequality constraints)
(pg − pd) + (qg − qd)j = diag(v)Ȳ v̄ (power flow constraint).

(1)
Here, fc : Rn → R is a cost function parameterized by electricity generation costs c; pd, qd ∈ Rn
are the real and imaginary power demands at all system nodes; Y ∈ Cn×n is the nodal admittance
matrix that describes how power flows throughout the system; the linear equality and inequality
constraints encode attributes of system nodes, lines, and generators; and we use the notation x̄ to
denote the complex conjugate of x. We note that the dual variable λ ∈ Rn on the power flow
constraint corresponds to the electricity prices at each node.

In general, problem (1) is non-convex and NP-hard. As such, it is in practice common to assume
that the objective is quadratic, linearize the power flow constraint using its Jacobian J at some point
z0 [19], and then solve the resulting problem iteratively via sequential quadratic programming [20].
Specifically, we write the linearized quadratic program corresponding to (1) as

minimize
z≡[angle(v)T |v|T pTg qTg ]

T
pTg diag(cq)pg + cTa pg

subject to Ãz = b̃

Gz ≤ h,

(2)

where Ã =
[
AT J(z0)T

]T
and b̃ =

[
bT k(z0)T

]T
collect both the original linear constraints and

the linearized power flow constraint J(z0)z = k(z0), and where c =
[
cTq cTa

]T
now contains the

quadratic and linear cost parameters cq, ca ∈ Rn, respectively, for power generation at each node.
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4 Inverse optimal power flow

We now describe our inverse optimal power flow algorithm, which attempts to learn private electricity
grid information from public information via ACOPF. Specifically, given public information on
real powers pg, pd and electricity prices λ, we seek to estimate private generator cost parameters c
and the nodal admittance matrix Y , where all variables are as described in Section 3. We do so by
constructing estimates ĉ? and Ŷ ? of c and Y , respectively, whose corresponding ACOPF outputs are
close to the true values of the publicly-available quantities pg and λ. Mathematically, this problem
can be formulated under some loss function ` on publicly-available quantities as

ĉ?, Ŷ ? = argmin
ĉ,Ŷ

`
(

(pg, λ), (p̂g, λ̂)
)

subject to p̂g, λ̂ = ACOPF(ĉ, Ŷ , pd),

(3)

where the constraint denotes that p̂g and λ̂ are the values of generator power injections and
power prices produced by solving the ACOPF problem (1) with cost parameters ĉ, admit-
tance matrix Ŷ , and nodal power demands pd. We solve this problem iteratively via Al-
gorithm 1, using backpropagation within a neural network to compute the needed gradients.

Algorithm 1 Inverse OPF Optimization

1: input: {(p(i)g , λ(i)) | i = 1, . . . ,m} // public data
2: initialize ĉ, Ŷ // some initial guess

3: for t = 1, . . . , T do
4: compute `pub =

∑m
i=1 `

(
(p

(i)
g , λ(i)), (p̂g

(i), λ̂(i))
)

5: // update guesses if loss has not converged
6: if `pub 6= 0 then
7: update ĉ with∇ĉ `pub

8: update Ŷ with∇Ŷ `pub
9: else

10: return ĉ, Ŷ
11: end if
12: end for

We note that while (3) maximizes
the agreement between true and esti-
mated public quantities, the objective
of actual interest is the agreement be-
tween the true and estimated private
quantities. However, there are poten-
tially multiple distinct sets of inputs
to ACOPF that would produce iden-
tical public outputs. Thus, we must
use enough data when executing Algo-
rithm 1 to ensure that there is a unique
set of private parameters that can pro-
duce the correct public outputs across
all input data points.

4.1 Optimizing
the inverse OPF problem

The main technical challenge of this approach is in computing the gradients
∇θ`

(
(p

(i)
g , λ(i)), (p̂g

(i), λ̂(i))
)

(which are required for computing ∇θ`pub) for each θ ∈ {ĉ, Ŷ }, as
this involves taking the gradient through the solutions to ACOPF. Specifically, we must compute

∂`

∂θ
=

∂`

∂p̂g(θ)

∂p̂g(θ)

∂θ
+

∂`

∂λ̂(θ)

∂λ̂(θ)

∂θ
, (4)

where ∂p̂g(θ)
∂θ and ∂λ̂(θ)

∂θ are the Jacobians of optimal primal and dual variables, respectively, in
problem (1), with respect to our parameter estimate θ (and where we denote the dependence of p̂g
and λ̂ on each θ here explicitly). To compute these Jacobians, we use the method presented in [15] to
take gradients through the optimal quadratic program (2) solved during the last iteration of sequential
quadratic programming. At a high level, this involves differentiating through the KKT optimality
conditions of (2) and using the implicit function theorem to get a set of linear equations we can solve
to get the necessary gradients. More details on this approach are described in Appendix A.

5 Experiments

We test our algorithm on a modified version of the IEEE 14-bus test case [21] with three generators
located at nodes 1, 2, and 8. More details about this system are included in Appendix B. We construct
our neural network using PyTorch1 and custom modifications on the qpth quadratic programming

1https://pytorch.org/
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Figure 1: Squared error of guesses for quadratic (cq) and linear (ca) generator costs when all
generators’ costs are unknown (lower is better). Each plotted point represents five runs over a given
amount of public data. We find that all cost parameters are identifiable with as little as 5 data points.
library [15], and train this network on up to 201 public outputs generated from the Grid Optimization
(GO) Competition simulations [22]. Our loss is `((pg, λ), (p̂g, λ̂)) = 100‖pg − p̂g‖22 + ‖λ − λ̂‖22
for (1), where the weighting term adjusts for differences in orders of magnitude between pg and λ.
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Figure 2: Squared error of sample admit-
tance matrix parameters (real and imagi-
nary parts plotted separately) as training
loss on our 201 public data points goes to
zero. Our estimate for Y12,13 converges,
but our estimate for Y1,4 diverges.

5.1 Cost parameters

We test the scenario in which all electricity generation
costs are unknown (but the admittance matrix is known).
Results for runs over different amounts of training data
are shown in Figure 1, with initial guesses for each cost
parameter sampled from a Gaussian distribution to encode
market participants’ prior knowledge of cost distributions.
We find that we are able to completely learn the cost pa-
rameters for this system with as little as 5 public data
points. Even though our test system is small, given that
real power grid data is published with hourly granularity
(i.e. 8760 data points per year), there is cause to believe
that publicly-available data may expose generator cost
parameters on the actual power system as well.

5.2 Admittance matrix parameters

Admittance matrix parameters (admittances) are poten-
tially harder to learn than costs, as the choice of admit-
tances can potentially render problem (1) infeasible before
or during training. In our experiments, we test whether
we can learn one admittance parameter at a time, where
our initial guess involves perturbing this parameter with
Gaussian noise reflecting the variability across all admit-
tances. (We assume all other parameters are known.) As
illustrated via representative results in Figure 2, our pre-
liminary tests suggest that some admittances are readily
identifiable while others may be harder to identify.

6 Conclusions and future work

We find that public power grid data may expose private data. Future work includes a more thorough
investigation of admittances on the 14-node system, as well as assessments on larger systems. These
assessments can aid policymakers as they explore options for data publication, market design, and
cybersecurity. While we address the case of power systems here, our method could be applied to
any setting in which private and public information are related via a known optimization problem;
extension of our method to other such settings also remains as important future work.
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A Details on computing gradients through ACOPF

To compute the gradients ∇θ `((p(i)g , λ(i)), (p̂g
(i), λ̂(i))) for each θ ∈ {ĉ, Ŷ }, we must take the

gradient through the solutions to the ACOPF optimization problem. Specifically, we must compute
the terms

∂`

∂θ
=

∂`

∂p̂g(θ)

∂p̂g(θ)

∂θ
+

∂`

∂λ̂(θ)

∂λ̂(θ)

∂θ
, (A.1)

where ∂p̂g(θ)
∂θ and ∂λ̂(θ)

∂θ are the Jacobians of optimal primal and dual variables, respectively, in
problem (1), with respect to our parameter estimate θ (and where we denote the dependence of p̂g and
λ̂ on each θ here explicitly). To compute these Jacobians at the last sequential quadratic programming
iterate, we use the method described in [15], implicitly differentiating through the KKT optimality
conditions of (2) to obtain linear equations we can solve to obtain the required gradients:

diag(cq) GT ÃT

diag(ν?)G diag(Gz? − h) 0

Ã 0 0



∂z?

∂θ

∂ν?

∂θ

∂κ̃?

∂θ

 =


−∂ diag(cq)

∂θ z? − ∂ca
∂θ −

∂GT

∂θ ν
? − ∂ÃT

∂θ κ̃
?

−diag(ν?)∂G∂θ z
? + diag(ν?)∂h∂θ

−∂Ã∂θ z
? + ∂b̃

∂θ

 ,
(A.2)

where ν are the dual variables on the linear inequality constraints, and κ̃ =
[
κT λT

]T
contains

the dual variables κ on the original linear inequality constraints and λ on the linearized power flow
constraint in (1). Here, we note that Ã =

[
AT J(z?)T

]T
and b̃ =

[
bT k(z?)T

]T
. While this

equation may look complex, fundamentally, the left side of this equation contains the generalized
Jacobian of the KKT optimality conditions of our convex problem, and the terms on the right side are
the gradients of optimization problem parameters.

In practice, we solve a slightly different set of equations to efficiently compute these gradients in
the context of a neural network, similar to the method described in [15]. In particular, we modify
Equation (7) of [15] to incorporate the gradients of the loss with respect to both the optimal primal
variable and the optimal dual variables on the equality constraints as[

dz
dν
dκ̃

]
=

diag(cq) GT diag(ν?) ÃT

G diag(Gz? − h) 0
Ã 0 0

−1

(
∂`
∂z?

)T
0(
∂`
∂κ̃?

)T
 . (A.3)

We then use the resultant values of dz , dν , and dκ̃ in the rest of the computations presented in [15].
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B Details on the 14-node test case

We test our algorithm on a modified version of the IEEE 14-bus test case2 with three generators
located at nodes 1, 2, and 8, respectively. A schematic of this system is shown in Figure B.1. The
power generation costs for each generator are f1(pg1) = 2p2g1 + 5pg1 , f2(pg2) = 4p2g2 + 2pg2 ,
and f8(pg8) = 5p2g8 + 1pg8 , and the primitive admittance matrix parameters used to construct the
admittance matrix can be found at the link in Footnote 2.

Figure B.1: The 14-node system on which we run our experiments.

2https://www.cs.cmu.edu/~zkolter/course/15-884/assignments.html
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