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Abstract

Northern leaf blight (NLB) is a foliar disease of maize that causes significant yield
losses in North America. Current preventative measures against NLB require man-
ually scouting fields to determine disease prevalence. In this work, we demonstrate
an automated, high-throughput system for the detection of NLB in field images
of maize plants. Using a small unmanned aerial system (sUAS) to acquire high
resolution images, we train a convolutional neural network (CNN) model on lower
resolution subimages, achieving 95.0 % accuracy on a test set of subimages isolated
from the training process. The CNN model can then be used to create interpretable
heatmaps of the original images, indicating where it believes lesions to exist.

1 Introduction

Northern Leaf Blight (NLB) is a fungal foliar disease of maize that has grown more severe in recent
years. Between 2012 and 2015, annual estimated yield losses in the United States and Ontario rose
sevenfold to 14 million metric tons [1], a loss worth roughly $1.9 billion. To breed maize with
improved NLB resistance, plant breeders and geneticists need to accurately quantify infection in field
trials. However, the current standard, human experts scoring plots by eye, is subject to high inter- and
intra-rater variation [2]. Naturally, it is of both academic and economic interest to develop an quick,
accurate, precision phenotyping solution to counter the effects of NLB. Prior work in image-based
phenotyping [3] [4] [5] has demonstrated the potential to fulfill the desiderata above, but either at
the cost of destructive sampling, or restricting image capture to homogeneous conditions. DeChant
et al. [6] introduces an NLB phenotyping system that processes field images in natural condition
using deep learning. A dataset of around 1000 manually captured images is used as dataset to train
and evaluate an ensemble model of five convolutional neural networks (CNNs). However, capturing
photographs with a handheld camera is still prohibitively time-consuming.

We develop an automated phenotyping system that combines the deep learning approach of [6] with
sUAS-based imagery. Previous work [7] [8] has used sUASs to image large swaths of farmland
rapidly and reliably. Inspired by such results, we tackle the data acquisition bottleneck of a machine
learning phenotyping system with sUASs, largely automating the phenotyping process. With a trained
model, our system requires almost no human input to perform end-to-end inference.

∗equal contribution

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



2 Related Work

Figure 1: Four sample images from our
dataset. The two images on the left were
captured in August 2017; the right images
are from September of the same year. Al-
though the images of each column are visu-
ally similar, the top row contains no lesions
while each image in the bottom row contains
seven.

Convolutional neural networks (CNNs) are currently state-
of-the-art in many computer vision tasks, such as object
classification and detection. Part of this success lies in
a CNN’s ability to perform automated feature extraction,
as opposed to classical methods that may require hand-
crafted features [9] [10]. We use a particular variant of a
CNN, a residual network [11], that uses skip connections
between layers to allow gradient information to propagate
more effectively through many layers.

The work of Mohanty et al. [12] is an early example of
deep learning applied to plant science; a CNN is trained on
a dataset of 54,306 images to classify 14 different species
of plants and 26 different diseases, achieving 99.35% accu-
racy on a held-out test set. Significantly lower accuracies
(<50%), however, were reported when testing their model
on images captured in natural conditions. A field image
contains considerably more information than a controlled
image of a leaf. A reliable machine learning phenotyping
system operating on field imagery must learn to generalize
between different lighting conditions and altitudes, and
distinguish distractor objects such as tassels and weeds
from the leaves of interest. [13] demonstrated 93% test accuracy using a transfer learning approach
for cassava disease phenotyping from field images taken with mobile phones. This work is the most
similar to our approach, with a notable difference: the pretrained model was treated purely as a
feature extractor to input into three base models. In this work, a linear layer was appended to the
model, and the weights of the pretrained model were trained together.

Previous approaches to deep NLB phenotyping [6] use ensembles of CNNs to produce a heatmaps
that are then fed into a final classification network. The CNN is trained from scratch on 224x224
subimages of the original images, and the resulting accuracy on a test set is 96.7%. Our contribution
is twofold: one, using transfer learning to speed up training and improve accuracy; two, adjusting the
subimage generation process to improve generalization; three, image capture using sUAS systems.

3 Methods

All images were taken in a planting of the Genomes to Fields Initiative. Plants were inoculated as
described in [14]. Our dataset contains images of both infected and non-infected leaves between
22 and 84 days post-inoculation (DPI). Images were collected using a Sony alpha 6000 camera
fitted with a Sony SEL55210 lense set to 210mm focal length. The camera was mounted to a DJI
Matrice 600 UAV flown at a speed of 1.5 m/s and 6m above ground level. The UAV was programed
to fly between way points set out in a serpentine fashion across the field and the cameras built-in
intervalometer was used to capture an image approximately once per second. There was no overlap
among images. For each image, we annotated the semimajor axis of each NLB lesion using a custom
ImageJ macro. Images were first filtered automatically by Canny edge detection and discarded during
annotation if they were out of focus, contained no maize leaves, etc. A total of 6,267 images are
included in the dataset: 3,741 with lesions and 2,526 without lesions. We randomly divided each set
of images (infected or non-infected) into training, validation and test sets by a ratio of 70:15:15. The
test set was isolated from all aspects of model design, training, and hyperparameter tuning.

Our model is split into two stages: in the first stage, we trained a CNN to predict whether small
subregions of an image contain lesions; the second stage uses the CNN as a sliding window over
the whole image to generate a heatmap. Unlike [6], which uses a manually designed architecture,
we used a Resnet-34 model [11] pretrained on ImageNet [15] as a base model for transfer learning,
rather than training from scratch. We appended a linear layer of output dimension 2, and fixed all
parameters of the ResNet-34 model besides those of the new linear layer. We trained the linear layer
for one epoch, then unfixed the remaining parameters when training in subsequent epochs.
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Figure 2: Our two stage pipeline for detection of NLB using deep learning. We randomly sample subimages
out of our training images; these subimages are divided into those containing lesions and those without lesions,
then used to train a CNN model using stochastic gradient descent. Using a sliding window approach, we take
chunks of our original image (see small white square) and feed it into our CNN. The output of the CNN is used
as the pixel value for that position in the heatmap. In this image, the final heatmap represents lesions as black
and non-lesioned areas as white. The three main black areas in the heatmap (top left, bottom left, and bottom
center) precisely overlap with the lesions in the image.

Positive Prediction Negative Prediction
True Positive 2790 597
True Negative 89 10261

Table 1: Confusion matrix for our CNN model on a hold-out test set of sub-images. There are 825 misclassifca-
tions out of 13859 subimages. The number of false negatives is large, but in the heatmap generation setting, a
model has many opportunities to make correct predictions when used as a sliding window.

We took a different approach to producing training data for our Stage 1 CNN than [6]. A key
distinction between hand-held images and drone images lies in the altitude from which the pictures
are taken. Whereas the individual lesions in hand-held images may occupy a large proportion of
the pixels in an image, at heights of a few meters each lesion will be significantly smaller. We
found that when taking subimages of 224 by 224 pixels (the input size for the ResNet-34 model, and
the size used in [6]), it was sometimes impossible for even an expert to tell whether the subimage
contained a lesion or not, simply because there was not enough context in the image. We modified
the procedure by taking a 500x500 selection from our original image of 4000x6000, and labeling
it according to whether the center-most 224x224 portion contained a lesion. We then introduced a
random variable X sampled from a discrete uniform distribution [-50, 50], and sampled subimages
with dimension 500 +X by 500 +X instead of 500 by 500. After applying other post-processing
steps (flips, rotations), we scaled down our modified 500x500 selection to 224x224 and added it to
our subimage training set.

In Stage 2, a sliding window of 500x500 is applied over the image, scaled down to 224x224, and fed
into the trained Stage 1 CNN. The output of the Stage 1 CNN determines the strength of the region of
the heatmap. The step size for the sliding window was fixed at 40.

We performed our experiments on a Google Compute Engine instance with 16GB RAM and an
NVidia P100 GPU, as well as a local machine with 16GB RAM and an NVidia 1080 GTX. The
ResNet model was imported from the PyTorch Model Zoo. Training was performed using stochastic
gradient descent (SGD) with a batch size of 80. After training, we used our model to generate
heatmaps on the original 4000x6000 images. We ran the CNN as a 224x224 sliding window over
our image and applied the softmax function on the outputs, normalizing them so that they represent
a probability distribution. Collecting the component of the output corresponding to "with lesion",
we generated a heatmap based on the matrix of these selected values. Each pixel of the heatmap
represents an associated portion of the original image - the intensity, or the strength of the softmax
output, denotes the CNNs "degree of belief" in lesion presence. 2

2Code will be released.
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Lesions No Lesions
Training 17324 56528
Validation 3730 10404
Test 3384 10350

Table 2: Statistics for subimage dataset. This dataset was used to train our final model.

4 Results

6267 images of maize leaves, comprising of 3741 images containing NLB-infected leaves and 2526
NLB-free images were analyzed in our work. On average, each image of infected leaves had 6.28
labeled lesions, totaling 25508 lesions. Not all senesced leaf tissue in our dataset was due to NLB
- other causes included physical damage, natural lower leaf senescence, nitrogen deficiency, corn
flea beetle feeding, and other foliar diseases such as northern corn leaf spot. Lesions present due to
inoculation were comparable to those caused by natural infection in the noninoculated batch, with
similar color and shape. We then reshuffled the data split, and changed the generation process such
that only one image per lesion was emitted, and many more negative samples. This model, despite
having a lower accuracy of 95.0%, created much more interpretable heatmaps. A confusion matrix
for this model is shown in Table 1; dataset statistics are shown in Table 2.

Figure 3: A comparison between an initial CNN model (left, trained with 1:1 lesion to nonlesion ratio), and our
final CNN model (right, trained with ratio of around 1:4). The original image is shown in the middle. In both
cases, the first model fails to detect many smaller lesions, while the final model is much more sensitive.

(a) (b) (c) (d)

Figure 4: The darker areas are where the model believes there to be a lesion; these areas indeed
contain lesions. (a), (b):Two examples of our model identifying erroneous labels in the dataset, or
“beating the experts”. (c), (d):Two examples of out-of-distribution inputs on which our models do not
achieve good performance: a pile of dead leaves, and a picture of the field taken from a horizontal
rather than vertical viewpoint.

Compared to the Stage 1 ensemble network in [6], which made use of individual CNNs with
accuracies as low as 81%, we attribute our high accuracies to transfer learning and the modified
subimage generation procedure. We hypothesize that the decrease in validation accuracy for the latter
is simply due to the fact that those training images do not have enough information - human experts
could not identify whether those subimages contain lesions or not. "Enlarging" the image eases the
burden on the CNN. While examining the heatmaps produced on the test set, we realized that some
of the mistakes made by our model, especially false positives, were actually mistakes in the dataset.
Another category of misclassifications belonged to out-of-distribution data, such as images of dead
leaves, or different irregular viewpoints (Figure 4).
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